Journal of Algebra 490 (2017) 21–54

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Discrete polymatroids satisfying a stronger symmetric exchange property

ALGEBRA

Dancheng Lu 1

Department of Mathematics, Soochow University, PR China

A R T I C L E I N F O

Article history: Received 11 September 2015 Available online 13 July 2017 Communicated by Bernd Ulrich

MSC: primary 13D02, 13C13 secondary 05E40

Keywords: White's conjecture Gorenstein Pruned lattice path polymatroid Linear quotient Depth

ABSTRACT

In this paper we introduce discrete polymatroids satisfying the one-sided strong exchange property and show that they are sortable (as a consequence their base rings are Koszul) and that they satisfy White's conjecture. Since any pruned lattice path polymatroid satisfies the one-sided strong exchange property, this result provides an alternative proof for one of the main theorems of J. Schweig in [12], where it is shown that every pruned lattice path polymatroid satisfies White's conjecture. In addition we characterize a class of such polymatroids whose base rings are Gorenstein. Finally for two classes of pruned lattice path polymatroidal ideals I and their powers we determine their depth and their associated prime ideals, and furthermore determine the least power k for which depth S/I^k and $Ass(S/I^k)$ stabilize. It turns out that depth S/I^k stabilizes precisely when $Ass(S/I^k)$ stabilizes in both cases.

© 2017 Elsevier Inc. All rights reserved.

E-mail address: ludancheng@suda.edu.cn.

http://dx.doi.org/10.1016/j.jalgebra.2017.06.031 0021-8693/© 2017 Elsevier Inc. All rights reserved.

 $^{^1}$ The paper was written while the author was visiting the Department of Mathematics of University Duisburg–Essen. He wants to express his thanks for its hospitality.

Introduction

Throughout this paper, we always denote vectors in boldface such as $\mathbf{u}, \mathbf{v}, \mathbf{u}_i, \mathbf{v}_i, \boldsymbol{\alpha}$ and etc. If \mathbf{u} is a vector in \mathbb{Z}^n , we use either u_i or $\mathbf{u}(i)$ to denote its *i*th entry and use $\mathbf{u}(A)$ to denote the number $\sum_{i \in A} u_i$ for a subset $A \subseteq \{1, \ldots, n\}$. Let k, ℓ be integers with $k \leq \ell$. Then $[k, \ell]$ denotes the interval $\{k, k + 1, \ldots, \ell\}$ and [1, k] is usually denoted by [k] for short. Also we denote by $\varepsilon_1, \ldots, \varepsilon_n$ the canonical basis of \mathbb{Z}^n and by \mathbb{Z}_+ the set of non-negative integers. The set \mathbb{Z}^n_+ has a partial ordering " \leq " defined by:

$$\mathbf{u} \leq \mathbf{v} \iff u_i \leq v_i \text{ for each } i = 1, \dots, n.$$

Unless otherwise stated, S always stands for the polynomial ring $\mathbb{K}[x_1, \ldots, x_n]$ over a field \mathbb{K} . For a subset $A \subseteq [n]$, P_A denotes the monomial prime ideal $(x_i: i \in A)$ of S.

For the basic knowledge of matroids we refer to [11]. In [5], discrete polymatroids are introduced, which generalize matroids in the way that monomial ideals generalize squarefree monomial ideals.

A discrete polymatroid on the ground set [n] is a nonempty finite set $\mathbf{P} \subseteq \mathbb{Z}_+^n$ satisfying

(D1) if $\mathbf{u} = (u_1, \ldots, u_n) \in \mathbf{P}$ and $\mathbf{v} = (v_1, \ldots, v_n) \in \mathbb{Z}_+^n$ with $\mathbf{v} \leq \mathbf{u}$, then $\mathbf{v} \in \mathbf{P}$; (D2) if $\mathbf{u} = (u_1, \ldots, u_n) \in \mathbf{P}$ and $\mathbf{v} = (v_1, \ldots, v_n) \in \mathbf{P}$ with $|\mathbf{u}| < |\mathbf{v}|$, then there is $i \in [n]$ with $u_i < v_i$ such that $\mathbf{u} + \boldsymbol{\varepsilon}_i \in \mathbf{P}$. Here $|\mathbf{u}| := \mathbf{u}([n])$.

A base of a discrete polymatroid \mathbf{P} is a vector \mathbf{u} of \mathbf{P} such that $\mathbf{u} < \mathbf{v}$ for no $\mathbf{v} \in \mathbf{P}$. Every base of \mathbf{P} has the same modulus rank(\mathbf{P}), the rank of \mathbf{P} . Let $B(\mathbf{P})$ or simply B denote the set of bases of \mathbf{P} . Every discrete polymatroid satisfies the following symmetric exchange property: if \mathbf{u} and \mathbf{v} are vectors of B, then for any $i \in [n]$ with $u_i < v_i$, there is $j \in [n]$ with $u_j > v_j$ such that both $\mathbf{u} + \boldsymbol{\varepsilon}_i - \boldsymbol{\varepsilon}_j$ and $\mathbf{v} - \boldsymbol{\varepsilon}_i + \boldsymbol{\varepsilon}_j$ belong to B. Conversely if B is a set of vectors in \mathbb{Z}^n_+ of the same modulus satisfying the symmetric exchange property, then $\mathbf{P} = {\mathbf{u} \in \mathbb{Z}^n_+ : \mathbf{u} \leq \mathbf{v} \text{ for some } \mathbf{v} \in B}$ is a discrete polymatroid with B as its set of bases.

We are interested in two algebraic structures associated with a discrete polymatroid \mathbf{P} : its base ring and its polymatroidal ideal. Let \mathbb{K} be a field. The base ring $\mathbb{K}[B(\mathbf{P})]$ (or simply $\mathbb{K}[B]$) of \mathbf{P} is defined to be the subring of $\mathbb{K}[t_1, \ldots, t_n]$ generated by monomials $\mathbf{t}^{\mathbf{u}} = t_1^{u_1} \ldots t_n^{u_n}$ with $\mathbf{u} \in B$. Meanwhile the polymatroidal ideal of \mathbf{P} is defined to be the monomial ideal in $S = \mathbb{K}[x_1, \ldots, x_n]$ generated by $\mathbf{x}^{\mathbf{u}} = x_1^{u_1} \ldots x_n^{u_n}$ with $\mathbf{u} \in B$.

Let T be the polynomial ring $\mathbb{K}[x_{\mathbf{u}} : \mathbf{u} \in B]$ and let I_B be the kernel of the \mathbb{K} -algebra homomorphism $\phi : T \to \mathbb{K}[B]$ with $\phi(x_{\mathbf{u}}) = \mathbf{t}^{\mathbf{u}}$ for any $\mathbf{u} \in B$. There are some obvious generators in I_B . Indeed, let $\mathbf{u}, \mathbf{v} \in B$ with $u_i > v_i$. Then there exists j such that $u_j < v_j$ and such that $\mathbf{u} - \varepsilon_i + \varepsilon_j$ and $\mathbf{v} + \varepsilon_i - \varepsilon_j$ belong to B. We see that $x_{\mathbf{u}}x_{\mathbf{v}} - x_{\mathbf{u}-\varepsilon_i+\varepsilon_j}x_{\mathbf{v}+\varepsilon_i-\varepsilon_j} \in I_B$. Such relations are called *symmetric exchange relations*. White [15] conjectured that for a matroid the symmetric exchange relations generate I_B . In [5], Herzog and Hibi predicted that this also holds for discrete polymatroids. Download English Version:

https://daneshyari.com/en/article/5771894

Download Persian Version:

https://daneshyari.com/article/5771894

Daneshyari.com