

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Smooth varieties with torus actions $\stackrel{\Rightarrow}{\sim}$

Alvaro Liendo^{*}, Charlie Petitjean

Instituto de Matemática y Física, Universidad de Talca, Casilla 721, Talca, Chile

ARTICLE INFO

Article history: Received 22 October 2016 Available online 19 July 2017 Communicated by Steven Dale Cutkosky

MSC: 14J17 14R20 14M25

Keywords: Algebraic torus actions T-varieties Smooth varieties Combinatorial description of T-varieties

ABSTRACT

In this paper we provide a characterization of smooth algebraic varieties endowed with a faithful algebraic torus action in terms of a combinatorial description given by Altmann and Hausen. Our main result is that such a variety X is smooth if and only if it is locally isomorphic in the étale topology to the affine space endowed with a linear torus action. Furthermore, this is the case if and only if the combinatorial data describing X is locally isomorphic in the étale topology to the combinatorial data describing affine space endowed with a linear torus action. Finally, we provide an effective method to check the smoothness of a \mathbb{G}_m -threefold in terms of the combinatorial data.

© 2017 Elsevier Inc. All rights reserved.

ALGEBRA

CrossMark

Introduction

Let k be an algebraically closed field of characteristic zero and let \mathbb{T} be the algebraic torus $\mathbb{T} = (\mathbb{G}_m)^k$ of dimension k where \mathbb{G}_m is the multiplicative group of the field (k^*, \cdot) . The variety \mathbb{T} has a natural structure of algebraic group. We denote by M its character lattice and by N its 1-parameter subgroup lattice. In this paper a variety denotes an

* Corresponding author.

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2017.07.001 \\ 0021\mathcal{eq:http://dx.doi.org/10.1016/j.jalgebra.2017.07.001 \\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2017.07.001 \\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2017.07.0016/j.jalgebra.2017.07.0016/j.jalgebra.20$

 $^{^{*}}$ This research was partially supported by projects FONDECYT regular 1160864 and FONDECYT postdoctorado 3160005.

E-mail addresses: aliendo@inst-mat.utalca.cl (A. Liendo), petitjean.charlie@gmail.com (C. Petitjean).

integral separated scheme of finite type. A \mathbb{T} -variety is a normal variety X endowed with a faithful action of \mathbb{T} acting on X by regular automorphisms. The assumption that the \mathbb{T} -action on X is faithful is not a restriction since given any regular \mathbb{T} -action α , the kernel ker α is a normal algebraic subgroup of \mathbb{T} and $\mathbb{T}/(\ker \alpha)$ is again an algebraic torus acting faithfully on X.

The complexity of a T-variety is the codimension of the generic orbit. Furthermore, since the action is assumed to be faithful, the complexity of X is given by dim $X - \dim \mathbb{T}$. The best known example of T-varieties are those of complexity zero, i.e., toric varieties. Toric varieties were first introduced by Demazure in [7] as a tool to study subgroups of the Cremona group. Toric varieties allow a combinatorial description in term of certain collections of strongly convex polyhedral cones in the vector space $N_{\mathbb{Q}} = N \otimes_{\mathbb{Z}} \mathbb{Q}$ called fans, see for instance [19,12,6].

For higher complexity there is also a combinatorial description of a \mathbb{T} -variety. We will use the language of p-divisors first introduced by Altmann and Hausen in [2] for the affine case and generalized in [3] to arbitrary \mathbb{T} -varieties. This description, that we call the A-H combinatorial description, generalizes previously known partial cases such as [14,8,11,24]. See [4] for a detailed survey on the topic.

Since the introduction of the A-H description, a lot of work has been done in generalizing the known results from toric geometry to the more general case of \mathbb{T} -varieties. On of the most basic parts of the theory that are still open is the characterization of smooth \mathbb{T} -varieties of complexity higher than one. In particular, several classification of singularities of \mathbb{T} -varieties are given in [17], but no smoothness criterion is given in complexity higher than one. In this paper we achieve such a characterization in arbitrary complexity.

By Sumihiro's Theorem [23], every (normal) \mathbb{T} -variety admits an affine cover by \mathbb{T} -invariant affine open sets. Hence, to study smoothness, it is enough to consider affine \mathbb{T} -varieties. The A-H description of an affine \mathbb{T} -variety X consists in a couple (Y, \mathcal{D}) , where Y is a normal semiprojective variety that is a kind of quotient of X, usually called the Chow quotient and \mathcal{D} is a divisor on Y whose coefficients are not integers as usual, but polyhedra in $N_{\mathbb{Q}}$, see Section 1 for details.

It is well known that an affine toric variety X of dimension n is smooth if and only if it is equivariantly isomorphic to a T-invariant open set in \mathbb{A}^n endowed with the standard T-action of complexity 0 by component-wise multiplication. Our main result states that an affine T-variety X of dimension n and of arbitrary complexity is smooth if and only if it is locally isomorphic in the étale topology to the affine space \mathbb{A}^n endowed with a linear T-action, see Proposition 4. Furthermore, X is smooth if and only if the combinatorial data (Y, \mathcal{D}) is locally isomorphic in the étale topology to the combinatorial data (Y', \mathcal{D}') of the affine space \mathbb{A}^n endowed with a linear T-action, see Theorem 7. The main ingredient in our result is Luna's Slice Theorem [18].

In order to effectively apply Theorem 7, it is necessary to know the A-H description of \mathbb{A}^n endowed with all possible linear T-actions. The case of complexity 0 and 1 are well known, see Corollary 9. In Proposition 12, we compute the combinatorial description of Download English Version:

https://daneshyari.com/en/article/5771898

Download Persian Version:

https://daneshyari.com/article/5771898

Daneshyari.com