

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Relative derived dimensions for cotilting modules

ALGEBRA

Michio Yoshiwaki^{a,b,*,1}

 ^a Department of Mathematics, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
^b Osaka City University Advanced Mathematical Institute, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan

ARTICLE INFO

Article history: Received 2 November 2016 Available online 4 August 2017 Communicated by Luchezar L. Avramov

MSC: 16E10 16E35 16G50 18E30

Keywords: Dimension of triangulated category Derived category Cotilting module Cohen-Macaulay module

ABSTRACT

For a Noetherian ring R and a cotilting R-module T of injective dimension at least 1, we prove that the derived dimension of R with respect to the category \mathcal{X}_T is precisely the injective dimension of T by applying Auslander–Buchweitz theory and Ghost Lemma. In particular, when R is a commutative Noetherian Cohen–Macaulay local ring with a canonical module ω_R and dim $R \geq 1$, the derived dimension of R with respect to the category of maximal Cohen–Macaulay modules is precisely dim R.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

This paper is a companion to [1]. We give an explicit value of the relative dimension of the derived category with respect to the subcategory associated with a cotilting module.

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2017.07.021} 0021-8693/© 2017$ Elsevier Inc. All rights reserved.

^{*} Correspondence to: Department of Mathematics, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.

 $E\text{-}mail\ address:\ yoshiwaki.michio@shizuoka.ac.jp.$

 $^{^1}$ The author was partially supported by JST (Japan Science and Technology Agency) CREST Mathematics Grant (15656429).

In this paper, we denote by R a Noetherian ring. All R-modules are finitely generated right R-modules. We denote by mod R the abelian category of R-modules and by $D^{b} (mod R)$ the derived category of mod R.

Then our main result is the following, which completes a main result Theorem 5.3 in [1].

Theorem 1.1. Let R be a Noetherian ring and T a cotilting R-module (see Definition 2.1) with inj.dim $T \ge 1$. Then we have an equality

 \mathcal{X}_T -tri.dim $\mathsf{D}^{\mathrm{b}}(\mathrm{mod}\,R) = \mathrm{inj.dim}\,T.$

The inequality \leq was shown in [1, Theorem 5.3]. In this paper, we will prove the converse inequality by applying Auslander–Buchweitz theory and Ghost Lemma.

We apply Theorem 1.1 to the following settings. For a commutative Noetherian Cohen-Macaulay local ring R with a canonical module ω_R , we denote by $\mathsf{CM}R$ the category of maximal Cohen-Macaulay modules. We call an R-algebra Λ an R-order if $\Lambda \in \mathsf{CM}R$. We denote by $\mathsf{CM}\Lambda$ the category of maximal Cohen-Macaulay Λ -modules (i.e. Λ -modules X satisfying $X \in \mathsf{CM}R$). As a special case of Theorem 1.1, we obtain the following results, which completes the inequalities (1.2.1) and (4.2.1) in [1].

Corollary 1.2. Let R be a commutative Noetherian Cohen–Macaulay local ring with a canonical module ω_R and dim $R \ge 1$. Then

(1) We have an equality

$$(\mathsf{CM}R)$$
-tri.dim $\mathsf{D}^{\mathsf{b}}(\mathrm{mod}\,R) = \dim R$.

(2) More generally, for an R-order Λ , we have an equality

 $(\mathsf{CM}\Lambda)$ -tri.dim $\mathsf{D}^{\mathrm{b}}(\mathrm{mod}\,\Lambda) = \dim R.$

Proof. Since ω_R (respectively, $\omega_\Lambda := \operatorname{Hom}_R(\Lambda, \omega_R)$) is a cotilting module with injective dimension dim R, the assertion follows from Theorem 1.1. \Box

2. Preliminaries

In this section, we will introduce the concept of a cotilting module. For an *R*-module *T*, we define the full subcategory ${}^{\perp}T$ of mod *R* as follows:

 ${}^{\perp}T := \{ X \in \text{mod} R \mid \text{Ext}_{R}^{i}(X,T) = 0 \text{ for any } i > 0 \}.$

Definition 2.1. An R-module T is called *cotilting* if it satisfies the following three conditions:

Download English Version:

https://daneshyari.com/en/article/5771908

Download Persian Version:

https://daneshyari.com/article/5771908

Daneshyari.com