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We introduce an explicit method for studying actions of a
group stack § on an algebraic stack X. As an example, we
study in detail the case where X = P(no, - - ,n,) is a weighted
projective stack over an arbitrary base S. To this end, we give
an explicit description of the group stack of automorphisms of
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1. Introduction

The aim of this work is to propose a concrete method for studying group actions on al-
gebraic stacks. Of course, in its full generality this problem could already be very difficult
in the case of schemes. The case of stacks has yet an additional layer of difficulty due to
the fact that stacks have two types of symmetries: 1-symmetries (i.e., self-equivalences)
and 2-symmetries (i.e., 2-morphisms between self-equivalences).

Studying actions of a group stack G on a stack X can be divided into two subproblems.
One, which is of geometric nature, is to understand the two types of symmetries alluded
to above; these can be packaged in a group stack AutX. The other, which is of homotopy
theoretic nature, is to get a hold of morphisms § — AutX. Here, a morphism § — AutX
means a weak monoidal functor; two morphisms f,g: § — AutX that are related by
a monoidal transformation ¢: f = g should be regarded as giving rise to the “same”
action.

Therefore, to study actions of § on X one needs to understand the group stack AutX,
the morphisms § — AutX, and also the transformations between such morphisms. Our
proposed method, uses techniques from 2-group theory to tackle these problems. It con-
sists of two steps:

1) finding suitable crossed module models for AutX and G;
2) using butterflies [11,1] to give a geometric description of morphisms § — AutX and
monoidal transformations between them.

Finding a ‘suitable’ crossed module model for AutX may not always be easy, but we
can go about it by choosing a suitable ‘symmetric enough’ atlas X — X. This can be
used to find an approximation of AutX (Proposition 6.2), and if we are lucky (e.g., when
X =P(ng,---,n,)) it gives us the whole AutX.

Once crossed module models for § and AutX are found, the butterfly method re-
duces the action problem to standard problems about group homomorphisms and group
extensions, which can be tackled using techniques from group theory.

Organization of the paper

Sections §3—85 are devoted to setting up the basic homotopy theory of 2-group actions
and using butterflies to formulate our strategy for studying actions. To illustrate our
method, in the subsequent sections we apply these ideas to study group actions on
weighted projective stacks. In §6 we define weighted projective general linear 2-groups
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