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TRACE IDEALS AND CENTERS OF ENDOMORPHISM RINGS

OF MODULES OVER COMMUTATIVE RINGS

HAYDEE LINDO

Abstract. Let R be a commutative Noetherian ring and M a finitely gen-
erated R-module. Under various hypotheses, it is proved that the center of
EndR(M) coincides with the endomorphism ring of the trace ideal of M . These

results are exploited to establish results for balanced and rigid modules, and
to settle certain cases of a conjecture of Huneke and Wiegand.

1. Introduction

Let R be a commutative ring and M a finitely generated R-module. The trace ideal
of M , denoted τM (R), is the ideal

∑
α(M) as α ranges over M∗ := HomR(M,R).

We are interested in the connection between the properties of M and those of
τM (R). For special classes of modules the corresponding trace ideals demonstrate
remarkable properties. For example, a finitely generated ideal is the trace ideal of
a projective module if and only if it is idempotent, and τM (R) = R if and only
if every finitely generated R-module is a homomorphic image of a direct sum of
copies of M ; see [9], [19] and Section 2.

This work was motivated by hints in the literature about the relationship between
τM (R) and the center of EndR(M). In [1], Auslander and Goldman show that when
τM (R) = R, each endomorphism in the center of EndR(M) is given by multiplica-
tion by a unique ring element (see also [7, Exercise 95]). That is, Z(EndR(M)) = R.

Two of our central results clarify this connection, first in the case whenM is reflexive
and faithful and second in the case where τM (R) has positive grade; see Theorems
3.9 and 3.21. In both cases, EndR(τM (R)) equals the center of the endomorphism
ring of an associated module (when the rings are viewed as subrings of the total
ring of quotients); see Corollaries 3.17 and 3.24.

Theorem. Let R be a Noetherian ring and M a finitely generated R-module.

(i) If M is reflexive and faithful, then there is a canonical isomorphism
of R-algebras

EndR(τM (R)) ∼= Z(EndR(M))
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