



Contents lists available at ScienceDirect

## Journal of Algebra

www.elsevier.com/locate/jalgebra

## Growth of Hilbert coefficients of Syzygy modules



ALGEBRA

### Tony J. Puthenpurakal

Department of Mathematics, IIT Bombay, Powai, Mumbai 400 076, India

#### A R T I C L E I N F O

Article history: Received 11 September 2015 Available online 7 April 2017 Communicated by Luchezar L. Avramov

MSC: primary 13D40 secondary 13A30

Keywords: Hilbert coefficients Complete intersection Blow-up algebra's

#### ABSTRACT

Let  $(A, \mathfrak{m})$  be a local complete intersection ring of dimension d and let I be an  $\mathfrak{m}$ -primary ideal. Let M be a maximal Cohen–Macaulay A-module. For  $i = 0, 1, \dots, d$ , let  $e_i^I(M)$  denote the *i*th Hilbert-coefficient of M with respect to I. We prove that for i = 0, 1, 2, the function  $j \mapsto e_i^I(\operatorname{Syz}_j^A(M))$  is of quasi-polynomial type with period 2. Let  $G_I(M)$  be the associated graded module of M with respect to I. If  $G_I(A)$  is Cohen–Macaulay and dim  $A \leq 2$  we also prove that the functions  $j \mapsto \operatorname{depth} G_I(\operatorname{Syz}_{2j+i}^A(M))$  are eventually constant for i = 0, 1. Let  $\xi_I(M) = \lim_{l \to \infty} \operatorname{depth} G_{I^l}(M)$ . Finally we prove that if dim A = 2 and  $G_I(A)$  is Cohen–Macaulay then the functions  $j \mapsto \xi_I(\operatorname{Syz}_{2j+i}^A(M))$  are eventually constant for i = 0, 1.

© 2017 Elsevier Inc. All rights reserved.

#### 1. Introduction

Let  $(A, \mathfrak{m})$  be a Noetherian local ring of dimension d and let M be a finitely generated A-module of dimension r. Let I be an  $\mathfrak{m}$ -primary ideal. Let  $\ell(N)$  denote the length of an A-module N. The function  $H_I^{(1)}(M, n) = \ell(M/I^{n+1}M)$  is called the *Hilbert– Samuel* function of M with respect to I. It is well-known that there exists a polynomial  $P_I(M, X) \in \mathbb{Q}[X]$  of degree r such that  $P_I(M, n) = H_I^{(1)}(M, n)$  for  $n \gg 0$ . The poly-

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2017.03.017} 0021-8693 @ 2017 Elsevier Inc. All rights reserved.$ 

E-mail address: tputhen@math.iitb.ac.in.

nomial  $P_I(M, X)$  is called the Hilbert–Samuel polynomial of M with respect to I. We write

$$P_I(M, X) = \sum_{i=0}^r (-1)^i e_i^I(M) \binom{X+r-i}{r-i}.$$

The integers  $e_i^I(M)$  are called the *i*th-Hilbert coefficient of M with respect to I. The zeroth Hilbert coefficient  $e_0^I(M)$  is called the *multiplicity* of M with respect to I.

For  $j \ge 0$  let  $\operatorname{Syz}_j^A(M)$  denote the *j*th syzygy of M. In this paper we investigate the function  $j \mapsto e_i^I(\operatorname{Syz}_j^A(M))$  for  $i \ge 0$ . It becomes quickly apparent that for reasonable answers we need that the minimal resolution of M should have some structure. Minimal resolutions of modules over complete intersection rings have a good structure. If  $A = B/(f_1, \dots, f_c)$  with  $\mathbf{f} = f_1, \dots, f_c$  a *B*-regular sequence and  $\operatorname{projdim}_B M$  is finite then also the minimal resolution of M has a nice structure. The definitive class of modules with a good structure theory of their minimal resolution is the class of modules with finite complete intersection dimension, see [2]. We are able to prove our results for a more restrictive class of modules than modules of finite CI-dimension.

**Definition 1.1.** We say the A module M has finite GCI-dimension if there is a flat local extension  $(B, \mathfrak{n})$  of A such that

- (1)  $\mathfrak{m}B = \mathfrak{n}.$
- (2)  $B = Q/(f_1, \dots, f_c)$ , where Q is local and  $f_1, \dots, f_c$  is a Q-regular sequence.
- (3)  $\operatorname{projdim}_{Q} M \otimes_{A} B$  is finite.

We note that every finitely generated module over an abstract complete intersection ring has finite GCI dimension. If  $A = R/(f_1, \dots, f_c)$  with  $f_1, \dots, f_c$  a *R*-regular sequence and  $\operatorname{projdim}_R M$  is finite then also *M* has finite GCI-dimension. We also note that if *M* has finite GCI dimension then it has finite CI-dimension. Although our notion of GCI dimension is weaker than the notion of CI-dimension, it should be noted that all known examples of modules having finite CI-dimension also has finite GCI-dimension. See 2.19 for reasons why we do not study modules with finite CI-dimension (the general case).

If M has finite CI-dimension then the function  $i \mapsto \ell(\operatorname{Tor}_i^A(M,k))$  is of quasipolynomial type with degree two. Set  $\operatorname{cx}(M) = \operatorname{degree}$  of this function +1. (See 2.7 for degree of a function of quasi-polynomial type).

Let  $G_I(A) = \bigoplus_{n \ge 0} I^n / I^{n+1}$  be the associated graded ring of A with respect to I. Let  $G_I(M) = \bigoplus_{n \ge 0} I^n M / I^{n+1} M$  be the associated graded module of M with respect to I. Our main result is

**Theorem 1.2.** Let  $(A, \mathfrak{m})$  be a Cohen–Macaulay local ring of dimension d and let M be a maximal Cohen–Macaulay A-module. Let I be an  $\mathfrak{m}$ -primary ideal. Assume M has finite GCI dimension. Then for i = 0, 1, 2, the function  $j \mapsto e_i^I(\operatorname{Syz}_j^A(M))$  is of quasipolynomial type with period two and degree  $\leq \operatorname{cx}(M) - 1$ . Download English Version:

# https://daneshyari.com/en/article/5771942

Download Persian Version:

https://daneshyari.com/article/5771942

Daneshyari.com