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Abstract

In this paper, we characterize Ulrich modules over cyclic quotient surface singularities using the notion
of special Cohen-Macaulay modules. We also investigate the number of indecomposable Ulrich modules
for a given cyclic quotient surface singularity, and show that the number of exceptional curves in the
minimal resolution determines a boundary on the number of indecomposable Ulrich modules.
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1. Introduction

Let (R,m, k) be a Cohen-Macaulay (= CM) local ring, with dim R = d. For a finitely generated
R-module M , we say that M is a maximal Cohen-Macaulay (= MCM) R-module if depthR M = d. For
each MCM R-module M , we have that μR(M) ≤ em(M), where μR(M) denotes the number of minimal
generators (i.e., μR(M) = dimk M/mM), and em(M) is the multiplicity of M with respect to m. Note
that if R is a domain, then we have that em(M) = (rankR M)em(R).

An Ulrich module is defined as a module that has the maximum number of generators with respect to
the above inequality. We sometimes call this a maximally generated maximal Cohen-Macaulay module,
in line with the original terminology [Ulr, BHU]. The name “Ulrich modules” was introduced in [HK].
We remark that the conditions below are inherited by direct summands and direct sums, and hence Ulrich
modules are closed under direct summands and direct sums.

Definition 1.1 ([Ulr, BHU]). Let M be an MCM R-module. We say that M is an Ulrich module if it
satisfies μR(M) = em(M).

Several properties of these modules have been investigated in the aforementioned references. In a more
geometric setting, they have been studied as Ulrich bundles, for example in [ESW, CH1, CH2, CKM].
Recently, this notion was generalized for each non-parameter m-primary ideal I in [GOTWY1], and this
notion has been actively studied (cf. [GOTWY2, GOTWY3]). Namely, we say that an MCM R-module
M is an Ulrich module “with respect to I ” if it satisfies the following conditions:

(1) eI(M) = �R(M/IM), (2)M/IM is an R/I-free module,

where eI(M) is the multiplicity of M with respect to I, and �R(M/IM) denotes the length of M/IM .
Thus, an Ulrich module with respect to m is nothing else but an Ulrich module in the sense of Defi-
nition 1.1. (The condition (2) is automatically satisfied if I = m.) In addition, Ulrich modules have
appeared in an attempt to formulate the notion of “almost Gorenstein rings” [GTT]. Thus, it has be-
come more important to understand these modules. However, even the existence of an Ulrich module
for a given CM local ring is still not known in general. Another important problem is to characterize
(and classify) Ulrich modules when a given ring R admits an Ulrich module. For example, we know the
existence of such a module for the following cases:

· A two dimensional domain with an infinite field [BHU].
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