Journal of Algebra 487 (2017) 93–117

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Congruence subgroups from representations of the three-strand braid group $\stackrel{\Rightarrow}{\approx}$

ALGEBRA

Joseph Ricci^a, Zhenghan Wang^{b,*}

^a Dept. of Mathematics, University of California, Santa Barbara, CA 93106-6105, USA
^b Microsoft Station Q and Dept. of Mathematics, University of California, Santa

 $Barbara,\ CA\ 93106\text{-}6105,\ USA$

ARTICLE INFO

Article history: Received 2 December 2016 Available online xxxx Communicated by Michel Broué

Keywords: Braid group Congruence subgroup Representation

ABSTRACT

Ng and Schauenburg proved that the kernel of a (2 +1)-dimensional topological quantum field theory representation of $SL(2, \mathbb{Z})$ is a congruence subgroup. Motivated by their result, we explore when the kernel of an irreducible representation of the braid group B_3 with finite image enjoys a congruence subgroup property. In particular, we show that in dimensions two and three, when the projective order of the image of the braid generator σ_1 is between 2 and 5 the kernel projects onto a congruence subgroup of $PSL(2, \mathbb{Z})$ and compute its level. However, we prove that for three dimensional representations, the projective order is not enough to decide the congruence property. For each integer of the form $2\ell\,\geq\,6$ with ℓ odd, we construct a pair of non-congruence subgroups associated with three-dimensional representations having finite image and σ_1 mapping to a matrix with projective order 2ℓ . Our technique uses classification results of low dimensional braid group representations, and the Fricke-Wohlfahrt theorem in number theory.

© 2017 Elsevier Inc. All rights reserved.

* The second author is partially supported by NSF grants DMS-1410144 and DMS-1411212.

* Corresponding author.

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2017.05.026} 0021\mbox{-}8693/\mbox{©}\ 2017\ Elsevier\ Inc.\ All\ rights\ reserved.$

E-mail addresses: ricci@math.ucsb.edu (J. Ricci), zhenghwa@microsoft.com (Z. Wang).

1. Introduction

The double cover $\operatorname{SL}(2,\mathbb{Z})$ of the modular group $\operatorname{PSL}(2,\mathbb{Z})$ naturally occurs in quantum topology as the mapping class group of the torus. Let $\Sigma_{g,n}$ be the orientable genus g surface with n punctures and denote by $\operatorname{Mod}(\Sigma_{g,n})$ its mapping class group. A (2+1)-dimensional topological quantum field theory (TQFT) affords a canonical projective representation of $\operatorname{Mod}(\Sigma_{g,n})$ which we refer to as a **quantum representation**. An amazing theorem of Ng and Schauenburg [9] says that the kernel of the quantum representations of $\operatorname{SL}(2,\mathbb{Z})$ is always a congruence subgroup. The modular group is also disguised as the three-strand braid group B_3 through the central extension: $1 \to \mathbb{Z} = \langle (\sigma_1 \sigma_2)^3 \rangle \to B_3 \to \operatorname{PSL}(2,\mathbb{Z}) \to 1$. Each simple object of the modular tensor category \mathcal{C} associated to a (2+1)-TQFT gives rise to a representation of B_3 . Are there versions of the Ng–Schauenburg congruence kernel theorem for those braid group representations? We initiate a systematic investigation of this problem and find that a native generalization does not hold.

To pass from a representation of B_3 to the modular group $PSL(2, \mathbb{Z})$, we consider only irreducible representations $\rho_x : B_3 \to GL(d, \mathbb{C})$ associated to a simple object xof a modular tensor category \mathcal{C} . Then the generator $(\sigma_1 \sigma_2)^3$ of the center of B_3 is a scalar of finite order. By rescaling ρ_x with a root of unity ξ , we obtain a representation of the modular group $\rho_{x,\xi} : PSL(2,\mathbb{Z}) \to GL(d,\mathbb{C})$. By the property F conjecture, the representations $\rho_{x,\xi}$ should have finite images if the squared quantum dimension d_x^2 of x is an integer. For the Ising anyon σ , the kernel is indeed a congruence subgroup, but the kernel for the anyon denoted as G in $D(S_3)$ is not [3]. Therefore, when a property F anyon has a congruence subgroup property is more subtle. In this paper we systematically explore the low dimensional irreducible representations of B_3 with finite images, and determine when the kernel is a congruence subgroup. Some basic results on finite quotient of the braid groups include [4,12,2].

Congruence subgroups of $\mathrm{SL}(2,\mathbb{Z})$ are well-studied as they are easy examples of finite index subgroups of $\mathrm{SL}(2,\mathbb{Z})$ and because of their role in the theory of modular forms and functions. Their relative scarcity in the collection of all finite index subgroups of $\mathrm{SL}(2,\mathbb{Z})$ makes them of interest. Indeed, if we let $N_c(n)$ (resp. N(n)) denote the number of congruence subgroups (resp. subgroups) of $\mathrm{SL}(2,\mathbb{Z})$ with index n then $N_c(n)/N(n) \to 0$ as $n \to \infty$ [11]. Contrast this with the result of Bass, Lazard, and Serre [1] and separately Mennicke [8] stating that for d greater than two any finite index subgroup of $\mathrm{SL}(d,\mathbb{Z})$ is a congruence subgroup.

Another motivation of this research is to study the vector-valued modular forms (VVMF) associated to congruence subgroups (see [6] and the references therein). VVMFs provide deep insight for the study of TQFTs and conformal field theories (CFTs). Since the general VVMF theory applies also to non-congruence subgroups, TQFT representations of B_3 provide interesting test ground of the theory and conversely, VVMF could provide deep insight into the study of the TQFT representations of B_3 even in the non-congruence case. The matrices contained in the image of a B_3 representation can also be

Download English Version:

https://daneshyari.com/en/article/5771960

Download Persian Version:

https://daneshyari.com/article/5771960

Daneshyari.com