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Viewing a bivariate polynomial f ∈ R[x, t] as a family of uni-
variate polynomials in t parametrized by real numbers x, we 
call f real rooted if this family consists of monic polynomi-
als with only real roots. If f is the characteristic polynomial 
of a symmetric matrix with entries in R[x], it is obviously 
real rooted. In this article the converse is established, namely 
that every real rooted bivariate polynomial is the character-
istic polynomial of a symmetric matrix over the univariate 
real polynomial ring. As a byproduct we present a purely al-
gebraic proof of the Helton–Vinnikov Theorem which solved 
the 60 year old Lax conjecture on the existence of definite 
determinantal representation of ternary hyperbolic forms.
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Introduction

Given a monic polynomial f ∈ A[t] over a commutative ring A we call a square matrix 
M ∈ Matn A a spectral representation of f over A if f is the characteristic polynomial 
of M , i.e., f = det(tIn −M). The main result of this paper is the following
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Theorem 1. Let f ∈ R[x, t] be real rooted, i.e., monic in t and for all a ∈ R the uni-
variate polynomial f(a, t) ∈ R[t] has only real roots. Then f admits a symmetric spectral 
representation over R[x], i.e., there exists M ∈ Symn R[x] such that f = det(tIn −M).

Symmetric spectral representations as certificates of real rootedness

Given a commutative ring A, it is generally a difficult problem to characterize those 
monic polynomials f ∈ A[t] that admit a symmetric spectral representation over A. 
As noted above, in the case where A is the polynomial ring R[x] there is an obvious 
necessary condition, namely that f is real rooted. In other words, this condition means 
that for every homomorphism R[x] → R the image of f in R[t] (under coefficient-wise 
application) has only real roots. The following generalization of this property is shared 
by all characteristic polynomials of symmetric matrices over any commutative ring A: 
We call f ∈ A[t] real rooted over A if f is monic and for all ring homomorphisms from A
to any real closed field R the image of f in R[t] has only roots in R. In the case A = R[x]
it suffices to check homomorphisms to R and hence this is indeed a generalization, see 
Remark 3.2.

Now it is natural to ask about the converse: Which real rooted polynomials admit a 
symmetric spectral representation, or some related, possibly weaker, representation that 
manifests the real rootedness?

The following characterization of real rooted polynomials over fields is due to 
Krakowski [16]: If K is any field of characteristic different from 2 then f ∈ K[t] is 
real rooted over K if and only if a power of f admits a symmetric spectral representa-
tion over K. See also [15] for a generalization and some lower and upper bounds on the 
exponent needed.

A useful reformulation of the existence of symmetric spectral representations has been 
given by Bender [3], generalizing a result of Latimer and MacDuffee [22], who established 
a correspondence between equivalence classes of spectral representations of a polynomial 
f over the ring of integers Z and ideal classes in Z[t]/(f). Bender’s observation in [3]
serves as an inspiration for the present work as it did for Bass, Estes and Guralnick who 
proved in [2] that if A is a Dedekind domain and f ∈ A[t] real rooted, then f divides the 
characteristic polynomial of a symmetric matrix over A. In other words this means that 
all roots of f are eigenvalues of a symmetric matrix. Using this result the eigenvalues of 
adjacency matrices of regular graphs are characterized.

For a slightly smaller class of polynomials, their result can be further extended: 
A monic polynomial over A is strictly real rooted if for any homomorphism A → R

to a real closed field R all roots of the image of f in R[t] lie in R and are simple. Kum-
mer recently showed in [19] that for any integral domain A every strictly real rooted 
polynomial f ∈ A[t] divides the characteristic polynomial of a symmetric matrix.

The first result towards classification of polynomials that admit symmetric spectral 
representations without additional factor is also due to Bender [4]: If K is a number field 
and f ∈ K[t] is real rooted over K with an odd degree factor, then f admits a symmetric 
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