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We study ascent and descent of the Golod property along an 
algebra retract. We characterise trivial extensions of modules, 
fibre products of rings to be Golod rings. We present a 
criterion for a graded module over a graded affine algebra 
of characteristic zero to be a Golod module.
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1. Introduction

Let R be a local ring with maximal ideal m and residue field R/m = k. Let M be a 
finitely generated R-module. The generating function of the sequence of Betti numbers 
of the minimal free resolution of M over R is a formal power series in Z[|t|]. This se-
ries is called the Poincaré series of M over R and is denoted by PR

M (t) (Definition 2.1). 
J-P. Serre showed that this series is coefficient-wise bounded above by a series represent-

E-mail addresses: agmath@gmail.com, anjan@math.iitb.ac.in.

http://dx.doi.org/10.1016/j.jalgebra.2017.02.009
0021-8693/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jalgebra.2017.02.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:agmath@gmail.com
mailto:anjan@math.iitb.ac.in
http://dx.doi.org/10.1016/j.jalgebra.2017.02.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2017.02.009&domain=pdf


A. Gupta / Journal of Algebra 480 (2017) 124–143 125

ing a rational function. The module M is said to be a Golod module when the Poincaré 
series coincides with the upper bound given by Serre (Definition 2.4). The ring R is said 
to be a Golod ring if its residue field k is a Golod R-module. We refer the reader for de-
tails regarding Golod rings and Golod modules to the survey article [6] by Avramov. The 
main objectives of this article are to study transfer of the Golod property along algebra 
retracts and more generally large homomorphisms, to establish a connection between 
the Golod property of a module and its trivial extension and finally to characterise the 
Golod property of fibre products of local rings.

A subring of a ring is called an algebra retract if the inclusion map has a left inverse 
(Definition 2.8). Several authors have studied how ring-theoretic properties transfer along 
algebra retracts from different perspectives. Basic properties like normality of domains, 
semi-normality, regularity, complete intersection, Koszul, Stanley–Reisner are known 
to descend along algebra retracts (see [2,9,8,24]). On the other hand, properties like 
Cohen–Macaulay, Gorenstein are not inherited by an algebra retract in general. We refer 
the reader to [9] for a very good exposition on this theme. In the present article we prove 
the following:

Theorem 1.1. Let j : (R, m) → (A, n) be an algebra retract with a section p : (A, n) →
(R, m). Let M be a finitely generated R-module which is Golod when viewed as an 
A-module via the homomorphism p. Then M is also a Golod R-module.

The Golod property does not ascend along an algebra retract in general as seen by any 
non-Golod local ring containing its residue field. So certain assumptions are necessary 
for an affirmative answer. Our main result stated below presents one such assumption.

Theorem 1.2. Let j : (R, m) → (A, n) be an algebra retract which admits sections (possibly 
equal) p and p′. Let ker(p) = I and ker(p′) = I ′ satisfy II ′ = 0. Consider R-module 
structures on I, I ′ via the retract map j. Then the ideal I is a Golod R-module if and 
only if I ′ is so.

Let N be an R-module. If we consider N as an A-module via any of the maps p, p′, 
then N is a Golod A-module if and only if N is a Golod R-module and I (equivalently I ′) 
is a Golod R-module. In particular, A is a Golod ring if and only if I (equivalently I ′) 
is a Golod R-module.

As an application we prove the following theorem.

Theorem 1.3. Let (R, m) be a local ring and M an R-module. Let A = R�M be the trivial 
extension of R by M . Then A is a Golod ring if and only if M is a Golod R-module.

The above result gives us an efficient method to study the Golod property of modules 
with results available to characterise Golod rings. We demonstrate this by giving a new 
characterisation of regularity of a ring in terms of the Golod property of its canonical 
module (Corollary 5.3).
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