

Journal of Algebra 480 (2017) 124-143

Ascent and descent of the Golod property along algebra retracts

Anjan Gupta

Department of Mathematics, IIT Bombay, India

A R T I C L E I N F O

Article history: Received 8 January 2016 Available online 20 February 2017 Communicated by Luchezar L. Avramov

MSC: 13D02 13D40 16S30 16S37

Keywords: Golod modules Massey products Fibre products

ABSTRACT

We study ascent and descent of the Golod property along an algebra retract. We characterise trivial extensions of modules, fibre products of rings to be Golod rings. We present a criterion for a graded module over a graded affine algebra of characteristic zero to be a Golod module.

@ 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let R be a local ring with maximal ideal \mathfrak{m} and residue field $R/\mathfrak{m} = k$. Let M be a finitely generated R-module. The generating function of the sequence of Betti numbers of the minimal free resolution of M over R is a formal power series in $\mathbb{Z}[|t|]$. This series is called the Poincaré series of M over R and is denoted by $P_M^R(t)$ (Definition 2.1). J-P. Serre showed that this series is coefficient-wise bounded above by a series represent-

E-mail addresses: agmath@gmail.com, anjan@math.iitb.ac.in.

ing a rational function. The module M is said to be a Golod module when the Poincaré series coincides with the upper bound given by Serre (Definition 2.4). The ring R is said to be a Golod ring if its residue field k is a Golod R-module. We refer the reader for details regarding Golod rings and Golod modules to the survey article [6] by Avramov. The main objectives of this article are to study transfer of the Golod property along algebra retracts and more generally large homomorphisms, to establish a connection between the Golod property of a module and its trivial extension and finally to characterise the Golod property of fibre products of local rings.

A subring of a ring is called an algebra retract if the inclusion map has a left inverse (Definition 2.8). Several authors have studied how ring-theoretic properties transfer along algebra retracts from different perspectives. Basic properties like normality of domains, semi-normality, regularity, complete intersection, Koszul, Stanley–Reisner are known to descend along algebra retracts (see [2,9,8,24]). On the other hand, properties like Cohen–Macaulay, Gorenstein are not inherited by an algebra retract in general. We refer the reader to [9] for a very good exposition on this theme. In the present article we prove the following:

Theorem 1.1. Let $j : (R, \mathfrak{m}) \to (A, \mathfrak{n})$ be an algebra retract with a section $p : (A, \mathfrak{n}) \to (R, \mathfrak{m})$. Let M be a finitely generated R-module which is Golod when viewed as an A-module via the homomorphism p. Then M is also a Golod R-module.

The Golod property does not ascend along an algebra retract in general as seen by any non-Golod local ring containing its residue field. So certain assumptions are necessary for an affirmative answer. Our main result stated below presents one such assumption.

Theorem 1.2. Let $j : (R, \mathfrak{m}) \to (A, \mathfrak{n})$ be an algebra retract which admits sections (possibly equal) p and p'. Let $\ker(p) = I$ and $\ker(p') = I'$ satisfy II' = 0. Consider R-module structures on I, I' via the retract map j. Then the ideal I is a Golod R-module if and only if I' is so.

Let N be an R-module. If we consider N as an A-module via any of the maps p, p', then N is a Golod A-module if and only if N is a Golod R-module and I (equivalently I') is a Golod R-module. In particular, A is a Golod ring if and only if I (equivalently I') is a Golod R-module.

As an application we prove the following theorem.

Theorem 1.3. Let (R, \mathfrak{m}) be a local ring and M an R-module. Let $A = R \ltimes M$ be the trivial extension of R by M. Then A is a Golod ring if and only if M is a Golod R-module.

The above result gives us an efficient method to study the Golod property of modules with results available to characterise Golod rings. We demonstrate this by giving a new characterisation of regularity of a ring in terms of the Golod property of its canonical module (Corollary 5.3).

Download English Version:

https://daneshyari.com/en/article/5771983

Download Persian Version:

https://daneshyari.com/article/5771983

Daneshyari.com