Accepted Manuscript Asymptotic Weights of Syzygies of Toric Varieties Xin Zhou PII: S0021-8693(17)30105-9 DOI: http://dx.doi.org/10.1016/j.jalgebra.2017.01.049 Reference: YJABR 16117 To appear in: Journal of Algebra Received date: 23 April 2016 Please cite this article in press as: X. Zhou, Asymptotic Weights of Syzygies of Toric Varieties, *J. Algebra* (2017), http://dx.doi.org/10.1016/j.jalgebra.2017.01.049 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ## **ACCEPTED MANUSCRIPT** #### ASYMPTOTIC WEIGHTS OF SYZYGIES OF TORIC VARIETIES #### XIN ZHOU #### 0. Abstract The purpose of the paper is to give a sharp asymptotic description of the weights that appear in the syzygies of a smooth toric variety. We prove that as the positivity of the embedding increases, in any strand of syzygies, torus weights after normalization stabilize to the same fixed shape that we explicitly specify. #### 1. Introduction The purpose of the paper is to give a sharp asymptotic description of the weights that appear in the syzygies of a smooth toric variety. We prove that as the positivity of the embedding increases, in any strand of syzygies, torus weights after normalization stabilize to the same fixed shape that we explicitly specify. Let X be a smooth projective toric variety over \mathbb{C} of dimension n throughout the paper, and L be a very ample toric line bundle on X. Then L defines a toric embedding: $$X \hookrightarrow \mathbb{P}^{r(L)} = \mathbb{P}H^0(X, L) = \text{Proj } S$$ where $r(L) = h^0(X, L) - 1$ and $S = \text{Sym}H^0(X, L)$. Write: $$R(X;L) = \bigoplus_{m} H^{0}(X, mL)$$ which is viewed as a finitely generated graded S-module. We will be interested in the syzygies of R(X; L) over S. Specifically, R has a graded minimal free resolution $$\mathbb{F}: \dots \to F_p \to \dots \to F_0 \to R \to 0$$ where $F_p = \bigoplus_j S(-a_{p,j})$ is a free S-module. Write $K_{p,q}(X;L)$ for the finite dimensional vector space of minimal p-th syzygies of degree (p+q), so that: $$F_p \cong \bigoplus_q K_{p,q}(X;L) \otimes_{\mathbb{C}} S(-p-q)$$ Moreover, in the above setting, the torus action on X induces torus actions on $K_{p,q}(X; L)$. We can naturally ask which torus weights appear in their decompositions. From an asymptotic perspective, Ein and Lazarsfeld show in [EL11] that for $1 \le q \le n$, if $L \gg 0$, $K_{p,q}(X;L) \ne 0$ for almost all $p \in [1,r_d]$. In this paper, we give a sharp description of the asymptotic distribution of normalized torus weights in syzygies. To give the statement, let Δ be the convex polytope associated to the very ample divisor A ([F93], Section 3.4, p66, P_A in notation of the book.) Let $L_d = A^{\otimes d}$. Then by degree counting, the torus weights of $K_{p,q}(X;L_d)$ correspond to integral points in $(p+q)d\cdot\Delta$. Denote the collection of weights by: $$\operatorname{wts}(K_{p,q}(X;L_d)) = \{ \text{Torus weights of } K_{p,q}(X;L_d) \} \subseteq (p+q)d \cdot \Delta$$ ### Download English Version: # https://daneshyari.com/en/article/5771984 Download Persian Version: https://daneshyari.com/article/5771984 <u>Daneshyari.com</u>