

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

The pro-nilpotent group topology on a free group

ALGEBRA

J. Almeida^a, M.H. Shahzamanian^a, B. Steinberg^{b,*}

 ^a Centro de Matemática e Departamento de Matemática, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
^b Department of Mathematics, City College of New York, New York City, NY 10031, United States

ARTICLE INFO

Article history: Received 10 February 2016 Available online 21 March 2017 Communicated by Louis Rowen

MSC: 20M07 20M35 20F10

Keywords: Profinite topologies Rational languages Automata Monoids Block groups Semidirect products Pseudovarieties Mal'cev products

ABSTRACT

In this paper, we study the pro-nilpotent group topology on a free group. First we describe the closure of the product of finitely many finitely generated subgroups of a free group in the pro-nilpotent group topology and then present an algorithm to compute it. We deduce that the nil-closure of a rational subset of a free group is an effectively constructible rational subset and hence has decidable membership. We also prove that the G_{nil} -kernel of a finite monoid is computable and hence pseudovarieties of the form V m G_{nil} have decidable membership problem, for every decidable pseudovariety of monoids V. Finally, we prove that the semidirect product J \ast G_{nil} has a decidable membership problem.

© 2017 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail addresses: jalmeida@fc.up.pt (J. Almeida), m.h.shahzamanian@fc.up.pt (M.H. Shahzamanian), bsteinberg@ccny.cuny.edu (B. Steinberg).

1. Introduction

Hall showed that every finitely generated subgroup of a free group is closed in the profinite topology [10]. Pin and Reutenauer conjectured that if H_1, H_2, \ldots, H_n are finitely generated subgroups of a free group, then the product $H_1H_2\cdots H_n$ is closed in the profinite topology [16]. Assuming this conjecture they presented a simple algorithm to compute the closure of a given rational subset of a free group. This conjecture was proved by Ribes and Zalesskiĭ [18], who also later proved that if the subgroups H_1, \ldots, H_n are *p*-closed for some prime *p*, then $H_1 \cdots H_n$ is *p*-closed, too [19].

Margolis, Sapir and Weil provided an algorithm to compute the nil-closure of a finitely generated subgroup of a free group [15]. In this paper, we provide an example of two finitely generated nil-closed subgroups H, K of a free group whose product HK is not nil-closed. However, we prove that the nil-closure of the product of finitely many finitely generated subgroups is the intersection over all primes p of its p-closures and present a procedure to compute algorithmically a finite automaton that accepts precisely the reduced words in the nil-closure of the product. Hence, there is a uniform algorithm to compute membership in the nil-closure of a product of finitely many finitely generated subgroups of a free group. We also prove that the nil-closure of a rational subset of a free group is again a rational subset and provide an algorithm to compute an automaton that accepts the reduced words in the nil-closure. This yields that the Mal'cev product $V \bigoplus G_{nil}$ is decidable for every decidable pseudovariety of monoids V, where G_{nil} is the pseudovariety of all finite nilpotent groups.

Auinger and the third author introduced the concept of arboreous pseudovarieties of groups [4] and proved that a pseudovariety of groups H is arboreous if and only if J m H = J * H, where J is the pseudovariety of all finite \mathcal{J} -trivial monoids. The pseudovariety G_{nil} is not arboreous and, therefore, $J \textcircled{m} G_{nil} \neq J * G_{nil}$. We prove that the pseudovariety $J * G_{nil}$ has decidable membership as an application of our results on computing nil-closures of rational subsets.

2. Decidability of the nil-closure of rational subsets

Let G be a group and H a pseudovariety of groups, that is, a class of finite groups closed under finite direct products, subgroups and homomorphic images. Then the pro-H topology on G is the group topology defined by taking as a fundamental system of neighborhoods of the identity all normal subgroups N of G such that $G/N \in H$. This is the weakest topology on G so that every homomorphism of G to a group in H (endowed with the discrete topology) is continuous. We say that G is *residually* H if, for every $g \in G \setminus \{1\}$, there is a homomorphism $\varphi: G \to H \in H$ with $\varphi(g) \neq 1$, or, equivalently, $\{1\}$ is an H-closed subgroup. In this case, the pro-H topology is Hausdorff and, in fact, it is metric when G is finitely generated. More precisely, when G is finitely generated, the topology is given by the following ultrametric écart. For $g \in G$, define Download English Version:

https://daneshyari.com/en/article/5771992

Download Persian Version:

https://daneshyari.com/article/5771992

Daneshyari.com