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Let A be a finite-dimensional piecewise hereditary algebra 
over an algebraically closed field. This text investigates the 
strong global dimension of A. This invariant is characterised in 
terms of the lengths of sequences of tilting mutations relating 
A to a hereditary abelian category, in terms of the generating 
hereditary abelian subcategories of the derived category of A, 
and in terms of the Auslander–Reiten structure of that derived 
category.
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Auslander–Reiten theory
Tilting theory

0. Introduction

Let A be a finite-dimensional algebra over an algebraically closed field k. Its category 
of finitely generated (left) modules is denoted by modA. Then, A is called piecewise 
hereditary if the bounded derived category Db(modA) is equivalent as a triangulated 
category to Db(H) where H is a hereditary abelian (k-linear) category with split idem-
potents, finite-dimensional Hom-spaces, and with tilting objects. In the particular case 
where A � EndH(T )op for some tilting object T ∈ H, the algebra A is called quasi-tilted.
It is called tilted when, in addition, H � modH for some finite-dimensional hereditary 
algebra H. In [13], Happel proved that a hereditary abelian category as above is equiv-
alent to the category of finitely generated modules over a hereditary algebra or to the 
category of coherent sheaves over a weighted projective line [10].

In the representation theory of finite-dimensional algebras, piecewise hereditary alge-
bras play a particular and important role. On the one hand, this is due to information 
that is already known on the representation theory of hereditary algebras, of tilted alge-
bras (see [16]) or of quasi-tilted algebras of canonical type (see [24]), and also to Happel’s 
description of the bounded derived category of hereditary abelian categories (see below). 
On the other hand, these algebras are used in many parts of representation theory. For 
instance, in order to develop the representation theory of other classes of algebras such 
as the selfinjective algebras (see [28]) or the cluster tilted algebras (see [4]), in order to 
investigate singularity theory (see [20]), or in order to categorify cluster algebras (see [8]).

The homological characterisation of quasi-tilted algebras [14] and the Liu–Skowroński 
criterion for tilted algebras (see [5]) suggest that the quasi-tilted algebras are the closest 
piecewise hereditary algebras to hereditary ones, and it is the main objective of this text 
to give theoretical and numerical criteria to determine how far a piecewise hereditary 
algebra is from being hereditary.

Recall the description of Db(H) made by Happel in [11]: Any object is the direct 
sum of (finitely many) stalk complexes X[i] (X ∈ H and i ∈ Z); And, for every 
i, j ∈ Z and X, Y ∈ H, the morphism space Hom(X[i], Y [j]) is naturally isomorphic 
to HomH(X, Y ) if i = 0, to Ext1H(X, Y ) if i = 1, and is equal to zero otherwise. Hence, 
when Db(modA) � Db(H), then there exists a tilting object T ∈ Db(H) (that is, an 
object such that Hom(T, T [i]) = 0 for i ∈ Z\{0}, and such that Db(H) is the small-
est full triangulated subcategory of Db(H) containing T and stable under taking direct 
summands) such that A � End(T )op as k-algebras. In particular, there exists a minimal 
� ∈ N and there exists s ∈ Z such that T lies in the additive closure 

∨�
i=0 H[s + i] of the 

union 
⋃�

i=0 H[s + i]. When � = 0, then A is quasi-tilted. And one may expect that the 
larger �, the further A is from being quasi-tilted. Note however that there exist examples 
where � = 1 and A is hereditary (see [12]).
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