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Let A be a Cohen–Macaulay normal domain. A non-commu-
tative crepant resolution (NCCR) of A is an A-algebra Γ of 
the form Γ = EndA(M), where M is a reflexive A-module, Γ is 
maximal Cohen–Macaulay as an A-module and gldim(Γ)P =
dimAP for all primes P of A. We give bountiful examples 
of equi-characteristic Cohen–Macaulay normal local domains 
and mixed characteristic Cohen–Macaulay normal local do-
mains having NCCR. We also give plentiful examples of affine 
Cohen–Macaulay normal domains having NCCR.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let A be a Cohen–Macaulay normal domain. Van den Bergh [14] defined a non-
commutative crepant resolution of A (henceforth NCCR) to be an A-algebra Γ of the 
form Γ = EndA(M), where M is a reflexive A-module, Γ is maximal Cohen–Macaulay 
as an A-module and gldim(Γ)P = dimAP for all primes P of A. We should remark that 
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Van den Bergh only defined this for Gorenstein normal domains as this has applications 
in algebraic geometry. However there are many algebraic reasons for consider this gen-
eralization, see [4]. For a nice survey on this topic see [10]. In general, it is subtle to 
construct NCCR’s. In this paper we give bountiful examples of Cohen–Macaulay normal 
domains having a NCCR.

1.1. Mixed characteristic case: We now outline in brief our construction. Recall f ∈
Z[X1, . . . , Xn] has content 1 if 1 belongs to the ideal generated by the coefficients of f . 
We say f is Q-smooth if Q[X1, . . . , Xn]/(f) is a regular ring. For a prime p we say f
is smooth mod-p if Zp[X1, . . . , Xn]/(f) is a regular ring. It is well-known that if f is 
Q-smooth then is smooth mod-p for infinitely many primes p. Our result is:

Theorem 1.2. Let (A, m) be an excellent normal Cohen–Macaulay local domain of mixed 
characteristic with perfect residue field k = A/m of characteristic p > 0. Assume A
has a NCCR and that dimA ≥ 2. Also assume that A has a canonical module. Let 
f ∈ Z[X1, . . . , Xn] be of content 1. Also assume that f is Q-smooth and is smooth 
mod-p. Set T = A[X1, . . . , Xn]/(f) and let n be a maximal ideal of T containing mT . Set 
A(f) = Tn. Then

(i) A(f) is flat over A with regular fiber. In particular if A is Gorenstein then so 
is A(f).

(ii) A(f) is an excellent normal Cohen–Macaulay local domain of mixed characteristic
with perfect residue field.

(iii) A(f) has a NCCR.

Furthermore if Γ = HomA(M, M) is a NCCR of A then Λ = Γ ⊗A A(f) is a NCCR 
of A(f).

1.3. Two dimensional rings of finite representation type have a NCCR (see [9, Theorem-
6]). For examples of two dimensional mixed characteristic rings of finite representation 
type see [12]. Using the above recipe we can construct plentiful examples of Cohen–
Macaulay local domain of mixed characteristic having NCCR’s. If k is algebraically 
closed then it can be easily shown that if A(f) ∼= A(g) as A-algebra’s then the hyper-
surfaces defined by f and g in An(k) are birational.

1.4. Equi-characteristic case (local): Let (A, m) be an excellent equi-characteristic Cohen–
Macaulay local domain with perfect residue field k. Assume A contains k, dimA ≥ 2 and 
that it has a canonical module. Let f ∈ k[X1, . . . , Xn] be smooth, i.e., k[X1, . . . , Xn]/(f)
is a regular ring. We show

Theorem 1.5. (with hypotheses as in 1.4) Assume A has a NCCR. Set T = A[X1, . . . ,
Xn]/(f). Let n be a maximal ideal of T containing mT . Set A(f) = Tn. Then
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