

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Examples of non-commutative crepant resolutions of Cohen Macaulay normal domains

ALGEBRA

Tony J. Puthenpurakal

Department of Mathematics, IIT Bombay, Powai, Mumbai 400 076, India

A R T I C L E I N F O

Article history: Received 9 September 2015 Available online 10 May 2017 Communicated by Michel Van den Bergh

MSC: 14B05 14A22 14E15 13C14 16E10

Keywords: Non-commutative crepant resolutions Normal domains Hensel rings

ABSTRACT

Let A be a Cohen–Macaulay normal domain. A non-commutative crepant resolution (NCCR) of A is an A-algebra Γ of the form $\Gamma = \operatorname{End}_A(M)$, where M is a reflexive A-module, Γ is maximal Cohen–Macaulay as an A-module and gldim $(\Gamma)_P =$ dim A_P for all primes P of A. We give bountiful examples of equi-characteristic Cohen–Macaulay normal local domains and mixed characteristic Cohen–Macaulay normal local domains having NCCR. We also give plentiful examples of affine Cohen–Macaulay normal domains having NCCR.

@ 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let A be a Cohen-Macaulay normal domain. Van den Bergh [14] defined a noncommutative crepant resolution of A (henceforth NCCR) to be an A-algebra Γ of the form $\Gamma = \text{End}_A(M)$, where M is a reflexive A-module, Γ is maximal Cohen-Macaulay as an A-module and $\text{gldim}(\Gamma)_P = \dim A_P$ for all primes P of A. We should remark that

E-mail address: tputhen@math.iitb.ac.in.

 $[\]label{eq:http://dx.doi.org/10.1016/j.jalgebra.2017.05.004 \\ 0021-8693/ © 2017 Elsevier Inc. All rights reserved.$

Van den Bergh only defined this for Gorenstein normal domains as this has applications in algebraic geometry. However there are many algebraic reasons for consider this generalization, see [4]. For a nice survey on this topic see [10]. In general, it is subtle to construct NCCR's. In this paper we give bountiful examples of Cohen–Macaulay normal domains having a NCCR.

1.1. Mixed characteristic case: We now outline in brief our construction. Recall $f \in \mathbb{Z}[X_1, \ldots, X_n]$ has content 1 if 1 belongs to the ideal generated by the coefficients of f. We say f is Q-smooth if $\mathbb{Q}[X_1, \ldots, X_n]/(f)$ is a regular ring. For a prime p we say f is smooth mod-p if $\mathbb{Z}_p[X_1, \ldots, X_n]/(f)$ is a regular ring. It is well-known that if f is Q-smooth then is smooth mod-p for infinitely many primes p. Our result is:

Theorem 1.2. Let (A, \mathfrak{m}) be an excellent normal Cohen-Macaulay local domain of mixed characteristic with perfect residue field $k = A/\mathfrak{m}$ of characteristic p > 0. Assume Ahas a NCCR and that dim $A \ge 2$. Also assume that A has a canonical module. Let $f \in \mathbb{Z}[X_1, \ldots, X_n]$ be of content 1. Also assume that f is Q-smooth and is smooth mod-p. Set $T = A[X_1, \ldots, X_n]/(f)$ and let \mathfrak{n} be a maximal ideal of T containing $\mathfrak{m}T$. Set $A(f) = T_{\mathfrak{n}}$. Then

- (i) A(f) is flat over A with regular fiber. In particular if A is Gorenstein then so is A(f).
- (ii) A(f) is an excellent normal Cohen-Macaulay local domain of mixed characteristic with perfect residue field.
- (iii) A(f) has a NCCR.

Furthermore if $\Gamma = \text{Hom}_A(M, M)$ is a NCCR of A then $\Lambda = \Gamma \otimes_A A(f)$ is a NCCR of A(f).

1.3. Two dimensional rings of finite representation type have a NCCR (see [9, Theorem-6]). For examples of two dimensional mixed characteristic rings of finite representation type see [12]. Using the above recipe we can construct plentiful examples of Cohen-Macaulay local domain of mixed characteristic having NCCR's. If k is algebraically closed then it can be easily shown that if $A(f) \cong A(g)$ as A-algebra's then the hypersurfaces defined by f and g in $\mathbb{A}^n(k)$ are birational.

1.4. Equi-characteristic case (local): Let (A, \mathfrak{m}) be an excellent equi-characteristic Cohen-Macaulay local domain with perfect residue field k. Assume A contains k, dim $A \ge 2$ and that it has a canonical module. Let $f \in k[X_1, \ldots, X_n]$ be smooth, i.e., $k[X_1, \ldots, X_n]/(f)$ is a regular ring. We show

Theorem 1.5. (with hypotheses as in 1.4) Assume A has a NCCR. Set $T = A[X_1, ..., X_n]/(f)$. Let \mathfrak{n} be a maximal ideal of T containing $\mathfrak{m}T$. Set $A(f) = T_n$. Then

Download English Version:

https://daneshyari.com/en/article/5772030

Download Persian Version:

https://daneshyari.com/article/5772030

Daneshyari.com