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1. Introduction

Let A be a Cohen-Macaulay normal domain. Van den Bergh [14] defined a non-
commutative crepant resolution of A (henceforth NCCR) to be an A-algebra T' of the
form I' = Enda (M), where M is a reflexive A-module, I" is maximal Cohen-Macaulay
as an A-module and gldim(I")p = dim Ap for all primes P of A. We should remark that
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Van den Bergh only defined this for Gorenstein normal domains as this has applications
in algebraic geometry. However there are many algebraic reasons for consider this gen-
eralization, see [4]. For a nice survey on this topic see [10]. In general, it is subtle to
construct NCCR/’s. In this paper we give bountiful examples of Cohen—Macaulay normal
domains having a NCCR.

1.1. Mixed characteristic case: We now outline in brief our construction. Recall f €
Z[X4,...,X,] has content 1 if 1 belongs to the ideal generated by the coefficients of f.
We say f is Q-smooth if Q[X1,...,X,]/(f) is a regular ring. For a prime p we say f
is smooth mod-p if Z,[X1,...,X,]/(f) is a regular ring. It is well-known that if f is
@Q-smooth then is smooth mod-p for infinitely many primes p. Our result is:

Theorem 1.2. Let (A, m) be an excellent normal Cohen—Macaulay local domain of mized
characteristic with perfect residue field k = A/m of characteristic p > 0. Assume A
has a NCCR and that dim A > 2. Also assume that A has a canonical module. Let
f € Z[Xy,...,Xy] be of content 1. Also assume that f is Q-smooth and is smooth
mod-p. Set T = A[Xq,...,X,]/(f) and let n be a mazimal ideal of T containing mT. Set
A(f)=T,. Then

(i) A(f) is flat over A with regular fiber. In particular if A is Gorenstein then so
is A(f).
(ii) A(f) is an excellent normal Cohen—Macaulay local domain of mized characteristic
with perfect residue field.
(iii) A(f) has a NCCR.

Furthermore if T = Homy (M, M) is a NCCR of A then A =T ®4 A(f) is a NCCR
of A(f)-

1.3. Two dimensional rings of finite representation type have a NCCR (see [9, Theorem-
6]). For examples of two dimensional mixed characteristic rings of finite representation
type see [12]. Using the above recipe we can construct plentiful examples of Cohen—
Macaulay local domain of mixed characteristic having NCCR’s. If k is algebraically
closed then it can be easily shown that if A(f) = A(g) as A-algebra’s then the hyper-
surfaces defined by f and g in A™(k) are birational.

1.4. Fqui-characteristic case (local): Let (A, m) be an excellent equi-characteristic Cohen—
Macaulay local domain with perfect residue field k. Assume A contains k, dim A > 2 and

that it has a canonical module. Let f € k[X;, ..., X,] be smooth, i.e., k[X1,..., X,]/(f)
is a regular ring. We show

Theorem 1.5. (with hypotheses as in 1.4) Assume A has a NCCR. Set T = A[X;,...,
X,)/(f)- Let n be a mazimal ideal of T containing mT. Set A(f) = T,. Then
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