

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Hilbert series of symmetric ideals in infinite polynomial rings via formal languages $\stackrel{\bigstar}{\Rightarrow}$

ALGEBRA

Robert Krone^a, Anton Leykin^{b,*,1}, Andrew Snowden^{c,2}

 ^a Department of Mathematics and Statistics, Queen's University, Kingston, ON, Canada
^b School of Mathematics, Georgia Institute of Technology, Atlanta, GA, United States
^c Department of Mathematics, University of Michigan, Ann Arbor, MI, United States

A R T I C L E I N F O

Article history: Received 20 October 2016 Available online 19 May 2017 Communicated by Seth Sullivant

Keywords: Hilbert series Formal languages Infinite dimensional polynomial ring Invariance up to symmetry Equivariant Groebner bases

ABSTRACT

Let R be the polynomial ring $K[x_{i,j}]$ where $1 \leq i \leq r$ and $j \in \mathbf{N}$, and let I be an ideal of R stable under the natural action of the infinite symmetric group S_{∞} . Nagel–Römer recently defined a Hilbert series $H_I(s,t)$ of I and proved that it is rational. We give a much shorter proof of this theorem using tools from the theory of formal languages and a simple algorithm that computes the series.

© 2017 Elsevier Inc. All rights reserved.

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2017.05.014 \\ 0021-8693/© 2017 Elsevier Inc. All rights reserved.$

 $^{^{\}circ}$ RK, AL, and AS are grateful to Banff International Research Station for hosting them during the workshop on "Free Resolutions, Representations, and Asymptotic Algebra" in May 2016.

^{*} Corresponding author.

E-mail addresses: rk71@queensu.ca (R. Krone), leykin@math.gatech.edu (A. Leykin), asnowden@umich.edu (A. Snowden).

URLs: http://rckr.one/ (R. Krone), http://people.math.gatech.edu/~aleykin3/ (A. Leykin), http://www-personal.umich.edu/~asnowden/ (A. Snowden).

¹ AL was supported by NSF grant DMS-1151297.

 $^{^2\,}$ AS was supported by NSF grants DMS-1303082 and DMS-1453893.

Contents

Introduction	354
Background on regular languages	355
Monomial ideals	356
General ideals	359
An algorithm for Hilbert series	360
Hilbert series of modules	361
ences	362
	Introduction

1. Introduction

1.1. Statement of results

Let R be the polynomial ring over the field K in variables $x_{i,j}$, where $i \in \{1, \ldots, r\}$ and $j \in \mathbf{N} = \{0, 1, 2, \ldots\}$. The infinite symmetric group S_{∞} acts on R (by fixing the first index and moving the second), and a fundamental result, proved originally by Cohen [2] but subsequently rediscovered [1,4], is that R is S_{∞} -noetherian: that is, any S_{∞} -ideal in R is generated by the S_{∞} -orbits of finitely many elements. Given this, one can begin to study finer properties of ideals. In this paper, we investigate their Hilbert series. Our technique gives a new, more natural, and far less technical handle on the Hilbert series than the methods of the original proof of rationality of the series.

Let $I \subset R$ be a homogeneous S_{∞} -ideal. For $n \geq 0$, let $R_n \subset R$ be the subalgebra generated by the variables $x_{i,j}$ with $1 \leq i \leq r$ and $j \leq n$, and put $I_n = I \cap R_n$. Then I_n is a finitely generated graded R_n -module, and so its Hilbert series $H_{I_n}(t)$ is a well-defined rational function. We define the Hilbert series of I by

$$H_I(s,t) = \sum_{n \ge 0} H_{I_n}(t) s^n.$$

This series was introduced by Nagel–Römer [7], who proved the following theorem:

Theorem 1.1. The series $H_I(s,t)$ is a rational function of s and t.

The purpose of this paper is to give a new proof of this theorem. Our proof is shorter and (in our opinion) conceptually clearer than the one given in [7].

Remark 1.2. In fact, [7] work with what we would call $H_{R/I}(s,t)$, but it is a trivial matter to pass between this and our $H_I(s,t)$, since the sum of these two series is $H_R(s,t)$. Note that R_n is a polynomial ring in r(n+1) variables, so $H_{R_n}(t) = (1-t)^{-r(n+1)}$, and thus

$$H_R(s,t) = \frac{1}{(1-t)^r - s} \quad \Box$$

Download English Version:

https://daneshyari.com/en/article/5772044

Download Persian Version:

https://daneshyari.com/article/5772044

Daneshyari.com