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Let R be the polynomial ring K[xi,j ] where 1 ≤ i ≤ r and 
j ∈ N, and let I be an ideal of R stable under the natural 
action of the infinite symmetric group S∞. Nagel–Römer 
recently defined a Hilbert series HI(s, t) of I and proved that 
it is rational. We give a much shorter proof of this theorem 
using tools from the theory of formal languages and a simple 
algorithm that computes the series.
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1. Introduction

1.1. Statement of results

Let R be the polynomial ring over the field K in variables xi,j , where i ∈ {1, . . . , r}
and j ∈ N = {0, 1, 2, . . .}. The infinite symmetric group S∞ acts on R (by fixing the first 
index and moving the second), and a fundamental result, proved originally by Cohen [2]
but subsequently rediscovered [1,4], is that R is S∞-noetherian: that is, any S∞-ideal 
in R is generated by the S∞-orbits of finitely many elements. Given this, one can begin 
to study finer properties of ideals. In this paper, we investigate their Hilbert series. Our 
technique gives a new, more natural, and far less technical handle on the Hilbert series 
than the methods of the original proof of rationality of the series.

Let I ⊂ R be a homogeneous S∞-ideal. For n ≥ 0, let Rn ⊂ R be the subalgebra 
generated by the variables xi,j with 1 ≤ i ≤ r and j ≤ n, and put In = I∩Rn. Then In is 
a finitely generated graded Rn-module, and so its Hilbert series HIn(t) is a well-defined 
rational function. We define the Hilbert series of I by

HI(s, t) =
∑
n≥0

HIn(t)sn.

This series was introduced by Nagel–Römer [7], who proved the following theorem:

Theorem 1.1. The series HI(s, t) is a rational function of s and t.

The purpose of this paper is to give a new proof of this theorem. Our proof is shorter 
and (in our opinion) conceptually clearer than the one given in [7].

Remark 1.2. In fact, [7] work with what we would call HR/I(s, t), but it is a trivial matter 
to pass between this and our HI(s, t), since the sum of these two series is HR(s, t). Note 
that Rn is a polynomial ring in r(n + 1) variables, so HRn

(t) = (1 − t)−r(n+1), and thus

HR(s, t) = 1
(1 − t)r − s
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