Journal of Algebra  $\bullet \bullet \bullet (\bullet \bullet \bullet \bullet) \bullet \bullet - \bullet \bullet \bullet$ 



Contents lists available at ScienceDirect

# Journal of Algebra

www.elsevier.com/locate/jalgebra



Brauer's height zero conjecture for quasi-simple groups ☆

Radha Kessar <sup>a,\*</sup>, Gunter Malle <sup>b</sup>

FB Mathematik, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern Germany

#### ARTICLE INFO

Article history: Received 6 October 2015 Available online xxxx Communicated by B. Srinivasan, M. Collins and G. Lehrer

To the memory of Sandy Green

MSC: 20C20 20C15

20C33

Keywords: Brauer's height zero conjecture Finite reductive groups

#### ABSTRACT

We show that Brauer's height zero conjecture holds for blocks of finite quasi-simple groups. This result is used in Navarro–Späth's reduction of this conjecture for general groups to the inductive Alperin–McKay condition for simple groups.

© 2016 Published by Elsevier Inc.

#### 1. Introduction

In this paper we verify that the open direction of Richard Brauer's 1955 height zero conjecture (BHZ) holds for blocks of finite quasi-simple groups:

http://dx.doi.org/10.1016/j.jalgebra.2016.05.010 0021-8693/© 2016 Published by Elsevier Inc.

 <sup>&</sup>lt;sup>a</sup> Department of Mathematics, City University London, Northampton Square, London EC1V 0HB, UK
 <sup>b</sup> FB Mathematik, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern,

<sup>&</sup>lt;sup>†</sup> The second author gratefully acknowledges financial support by ERC Advanced Grant 291512.

<sup>\*</sup> Corresponding author.

E-mail addresses: Radha.Kessar.1@city.ac.uk (R. Kessar), malle@mathematik.uni-kl.de (G. Malle).

2

**Main Theorem.** Let S be a finite quasi-simple group,  $\ell$  a prime and B an  $\ell$ -block of S. Then B has abelian defect groups if and only if all  $\chi \in Irr(B)$  have height zero.

The proof of one direction of Brauer's height zero conjecture, that blocks with abelian defect groups only contain characters of height zero, was completed in [15]. Subsequently it was shown by Gabriel Navarro and Britta Späth [22] that the other direction of (BHZ) can be reduced to proving the following for all finite quasi-simple groups S:

- (1) (BHZ) holds for S, and
- (2) the inductive form of the Alperin–McKay conjecture holds for S/Z(S).

Here, we show that the first statement holds. The main case, when S is quasi-simple of Lie type, is treated in Section 2, and then the proof of the Main Theorem is completed in Section 3.

## 2. Brauer's height zero conjecture for groups of Lie type

In this section we show that (BHZ) holds for quasi-simple groups of Lie type. This constitutes the central part of the proof of our Main Theorem.

Throughout, we work with the following setting. We let  $\mathbf{G}$  be a connected reductive linear algebraic group over an algebraic closure of a finite field of characteristic p, and  $F: \mathbf{G} \to \mathbf{G}$  a Steinberg endomorphism with finite group of fixed points  $\mathbf{G}^F$ . It is well-known that apart from finitely many exceptions, all finite quasi-simple groups of Lie type can be obtained as  $\mathbf{G}^F/Z$  for some central subgroup  $Z \leq \mathbf{G}^F$  by choosing  $\mathbf{G}$  simple of simply connected type.

We let  $\mathbf{G}^*$  be dual to  $\mathbf{G}$ , with compatible Steinberg endomorphism again denoted F. Recall that by the results of Lusztig the set  $\operatorname{Irr}(\mathbf{G}^F)$  of complex irreducible characters of  $\mathbf{G}^F$  is a disjoint union of rational Lusztig series  $\mathcal{E}(\mathbf{G}^F, s)$ , where s runs over the semisimple elements of  $\mathbf{G}^{*F}$  up to conjugation.

### 2.1. Groups of Lie type in their defining characteristic

We first consider the easier case of groups of Lie type in their defining characteristic, where we need the following:

**Lemma 2.1.** Let G be simple, not of type  $A_1$ , with Frobenius endomorphism  $F : G \to G$ . Then every coset of  $[G^F, G^F]$  in  $G^F$  contains a (semisimple) element centralising a root subgroup of  $G^F$ .

**Proof.** First note that by inspection any of the rank 2 groups  $L_3(q)$ ,  $U_3(q)$ , and  $S_4(q)$  (and hence also  $U_4(q)$ ) contains a root subgroup  $U \cong \mathbb{F}_q^+$  all of whose non-identity elements are conjugate under a maximally split torus. Now if **G** is not of type  $A_1$  with

## Download English Version:

# https://daneshyari.com/en/article/5772054

Download Persian Version:

https://daneshyari.com/article/5772054

<u>Daneshyari.com</u>