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p-subgroups of G which we will call the anchors of x. This
invariant has been considered by Barker in the context of fi-
nite p-solvable groups. Besides proving some basic properties
Dedicated to the memory of of these anchors, we investigate the relation to other p-groups
J.A. Green which can be attached to irreducible characters, such as defect
groups, vertices in the sense of J.A. Green and vertices in the
sense of G. Navarro.
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1. Introduction

Let p be a prime number and O a complete discrete valuation ring with residue
field & = O/J(O) of characteristic p and field of fractions K of characteristic 0. For
G a finite group, we denote by Irr(G) the set of characters of the simple K G-modules.
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For x € Irr(G), we denote by e, the unique primitive idempotent in Z(KG) satisfying
x(ey) # 0. The O-order OGe, in the simple K-algebra KGe, is a G-interior O-algebra,
via the group homomorphism G — (OGe,)* sending g € G to ge,. Since (OGe, )¢ =
Z(0OGe,) is a subring of the field Z(KGe,), it follows that OGe,, is a primitive G-interior
O-algebra. In particular, OGe, is a primitive G-algebra. By the fundamental work of
J.A. Green [7], it has a defect group. This is used in work of Barker [1] to prove a part of
a conjecture of Robinson (cf. [24, 4.1, 5.1]) for blocks of finite p-solvable groups. In order
to distinguish this invariant from defect groups of blocks and from vertices of modules,
we introduce the following terminology.

Definition 1.1. Let G be a finite group and let x € Irr(G). An anchor of x is a defect
group of the primitive G-interior O-algebra OGe,.

By the definition of defect groups, an anchor of an irreducible character y of G is
a subgroup P of G which is minimal with respect to e, € (OGe,)%, where (OGe, )%
denotes the image of the relative trace map Tr : (OGe, )" — (OGe, ). Green’s general
theory in [7, §5] implies that the anchors of y form a conjugacy class of p-subgroups of G.

For the remainder of the paper we make the blanket assumption that K and k are
splitting fields for the finite groups arising in the statements below. In a few places, this
assumption is not necessary; see the Remark 1.7 below.

Theorem 1.2. Let G be a finite group and let x € Irr(G). Let B be the block of OG
containing x and let L be an OG-lattice affording x. Let P be an anchor of x and denote
by AP the image {(x,x) |z € P} of P under the diagonal embedding of G in G x G. The
following hold.

a

(
(b) P contains a vertex of L.

) P is contained in a defect group of B.

)
(c) We have O,(G) < P.
(d) The suborder OPe, of OGe, is local, and OGe,, is a separable extension of OPe,,.
(e) AP is contained in a vertex of the O(G x G)-module OGe, and P x P contains a

vertex of OGe,. Moreover, AP is a vertex of OGe,, if and only if x is of defect zero.

For G a finite group, we denote by IBr(G) the set of O-valued Brauer characters of the
simple kG-modules. We denote by G° the set of p’-elements in G, and for y a K-valued
class function on G, we denote by x° the restriction of x to G°.

Theorem 1.3. Let G be a finite group and x € Irr(G). Let B be the block of OG containing
x and let L be an OG-lattice affording x. Let P be an anchor of x. The following hold.

(a) If x° € IBr(G), then L is unique up to isomorphism, P is a vertex of L, and P x P
is a vertex of the O(G x G)-module OGe,.
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