Journal of Algebra 475 (2017) 113-132

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Anchors of irreducible characters

ALGEBRA

Radha Kessar^a, Burkhard Külshammer^{b,*,1}, Markus Linckelmann^a

 ^a Department of Mathematics, City University London, EC1V 0HB, United Kingdom
^b Institut f
 ür Mathematik, Friedrich-Schiller-Universit
 ät, 07743 Jena, Germany

A R T I C L E I N F O

Article history: Received 10 November 2015 Available online 9 December 2015 Communicated by B. Srinivasan, M. Collins and G. Lehrer

Dedicated to the memory of J.A. Green

Keywords: Finite group Character Block Defect group Vertex

ABSTRACT

Given a prime number p, every irreducible character χ of a finite group G determines a unique conjugacy class of p-subgroups of G which we will call the *anchors* of χ . This invariant has been considered by Barker in the context of finite p-solvable groups. Besides proving some basic properties of these anchors, we investigate the relation to other p-groups which can be attached to irreducible characters, such as defect groups, vertices in the sense of J.A. Green and vertices in the sense of G. Navarro.

@ 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let p be a prime number and \mathcal{O} a complete discrete valuation ring with residue field $k = \mathcal{O}/J(\mathcal{O})$ of characteristic p and field of fractions K of characteristic 0. For G a finite group, we denote by Irr(G) the set of characters of the simple KG-modules.

^{*} Corresponding author.

E-mail addresses: radha.kessar.1@city.ac.uk (R. Kessar), kuelshammer@uni-jena.de (B. Külshammer), markus.linckelmann@city.ac.uk (M. Linckelmann).

¹ The second author gratefully acknowledges support by the DFG (SPP 1388).

For $\chi \in \operatorname{Irr}(G)$, we denote by e_{χ} the unique primitive idempotent in Z(KG) satisfying $\chi(e_{\chi}) \neq 0$. The \mathcal{O} -order $\mathcal{O}Ge_{\chi}$ in the simple K-algebra KGe_{χ} is a G-interior \mathcal{O} -algebra, via the group homomorphism $G \to (\mathcal{O}Ge_{\chi})^{\times}$ sending $g \in G$ to ge_{χ} . Since $(\mathcal{O}Ge_{\chi})^G = Z(\mathcal{O}Ge_{\chi})$ is a subring of the field $Z(KGe_{\chi})$, it follows that $\mathcal{O}Ge_{\chi}$ is a primitive G-interior \mathcal{O} -algebra. In particular, $\mathcal{O}Ge_{\chi}$ is a primitive G-algebra. By the fundamental work of J.A. Green [7], it has a defect group. This is used in work of Barker [1] to prove a part of a conjecture of Robinson (cf. [24, 4.1, 5.1]) for blocks of finite *p*-solvable groups. In order to distinguish this invariant from defect groups of blocks and from vertices of modules, we introduce the following terminology.

Definition 1.1. Let G be a finite group and let $\chi \in Irr(G)$. An anchor of χ is a defect group of the primitive G-interior \mathcal{O} -algebra $\mathcal{O}Ge_{\chi}$.

By the definition of defect groups, an anchor of an irreducible character χ of G is a subgroup P of G which is minimal with respect to $e_{\chi} \in (\mathcal{O}Ge_{\chi})_{P}^{G}$, where $(\mathcal{O}Ge_{\chi})_{P}^{G}$ denotes the image of the relative trace map $\operatorname{Tr}_{P}^{G} : (\mathcal{O}Ge_{\chi})^{P} \to (\mathcal{O}Ge_{\chi})^{G}$. Green's general theory in [7, §5] implies that the anchors of χ form a conjugacy class of p-subgroups of G.

For the remainder of the paper we make the blanket assumption that K and k are splitting fields for the finite groups arising in the statements below. In a few places, this assumption is not necessary; see the Remark 1.7 below.

Theorem 1.2. Let G be a finite group and let $\chi \in Irr(G)$. Let B be the block of $\mathcal{O}G$ containing χ and let L be an $\mathcal{O}G$ -lattice affording χ . Let P be an anchor of χ and denote by ΔP the image $\{(x, x) | x \in P\}$ of P under the diagonal embedding of G in $G \times G$. The following hold.

- (a) P is contained in a defect group of B.
- (b) P contains a vertex of L.
- (c) We have $O_p(G) \leq P$.
- (d) The suborder $\mathcal{OP}e_{\chi}$ of $\mathcal{OG}e_{\chi}$ is local, and $\mathcal{OG}e_{\chi}$ is a separable extension of $\mathcal{OP}e_{\chi}$.
- (e) ΔP is contained in a vertex of the $\mathcal{O}(G \times G)$ -module $\mathcal{O}Ge_{\chi}$ and $P \times P$ contains a vertex of $\mathcal{O}Ge_{\chi}$. Moreover, ΔP is a vertex of $\mathcal{O}Ge_{\chi}$ if and only if χ is of defect zero.

For G a finite group, we denote by $\operatorname{IBr}(G)$ the set of \mathcal{O} -valued Brauer characters of the simple kG-modules. We denote by G° the set of p'-elements in G, and for χ a K-valued class function on G, we denote by χ° the restriction of χ to G° .

Theorem 1.3. Let G be a finite group and $\chi \in Irr(G)$. Let B be the block of $\mathcal{O}G$ containing χ and let L be an $\mathcal{O}G$ -lattice affording χ . Let P be an anchor of χ . The following hold.

(a) If $\chi^{\circ} \in \operatorname{IBr}(G)$, then L is unique up to isomorphism, P is a vertex of L, and $P \times P$ is a vertex of the $\mathcal{O}(G \times G)$ -module $\mathcal{O}Ge_{\chi}$.

Download English Version:

https://daneshyari.com/en/article/5772057

Download Persian Version:

https://daneshyari.com/article/5772057

Daneshyari.com