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The representations of a quiver Q over a field k (the 
kQ-modules, where kQ is the path algebra of Q over k) 
have been studied for a long time, and one knows quite 
well the structure of the module category mod kQ. It seems 
to be worthwhile to consider also representations of Q over 
arbitrary finite-dimensional k-algebras A. Here we draw the 
attention to the case when A = k[ε] is the algebra of dual 
numbers (the factor algebra of the polynomial ring k[T ] in 
one variable T modulo the ideal generated by T 2), thus to the 
Λ-modules, where Λ = kQ[ε] = kQ[T ]/〈T 2〉. The algebra Λ
is a 1-Gorenstein algebra, thus the torsionless Λ-modules are 
known to be of special interest (as the Gorenstein-projective or 
maximal Cohen–Macaulay modules). They form a Frobenius 
category L, thus the corresponding stable category L is 
a triangulated category. As we will see, the category L
is the category of perfect differential kQ-modules and L
is the corresponding homotopy category. The category L
is triangle equivalent to the orbit category of the derived 
category Db(mod kQ) modulo the shift and the homology 
functor H: mod Λ → mod kQ yields a bijection between the 
indecomposables in L and those in mod kQ. Our main interest 
lies in the inverse, it is given by the minimal L-approximation. 
Also, we will determine the kernel of the restriction of the 
functor H to L and describe the Auslander–Reiten quivers of 
L and L.
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Introduction

Throughout the paper, k will be a field and Q will be a finite connected acyclic 
quiver. The starting point for the considerations of this paper is the following result which 
concerns the structure of the homotopy category of perfect differential kQ-modules. This 
assertion should be well-known, but we could not find a reference.

Let us recall that given a ring R, a differential R-module is by definition a pair (N, ε)
where N is an R-module and ε an endomorphism of N such that ε2 = 0. If (N, ε)
and (N ′, ε′) are differential R-modules, a morphism f : (N, ε) → (N ′, ε′) is given by an 
R-linear map f : N → N ′ such that ε′f = fε. The morphism f : (N, ε) → (N ′, ε′) is 
said to be homotopic to zero provided there exists an R-linear map h: N → N ′ such 
that f = hε + ε′h. A differential R-module (N, ε) is said to be perfect provided N is a 
finitely generated projective R-module. We denote by diffperf(R) the category of perfect 
differential R-modules, and by diffperf(R) the corresponding homotopy category. Let us 
denote by H the homology functor: it attaches to a differential R-module (N, ε) the 
R-module H(N, ε) = Ker ε/ Im ε. It is well-known that H vanishes on the maps which 
are homotopic to zero.

If R is noetherian, let us denote by Db(modR) the bounded derived category of 
finitely generated R-modules. This is a triangulated category and its shift functor will 
be denoted by [1].

Theorem 1. (a) The category diffperf(kQ) of perfect differential kQ-module is a Frobenius 
category. The corresponding stable category diffperf(R) is the homotopy category of perfect 
differential kQ-modules. This category diffperf(R) is the orbit category Db(mod kQ)/[1].

(b) The homology functor H: diffperf(kQ) → mod kQ is a full and dense functor which 
furnishes a bijection between the indecomposables in the homotopy category diffperf(kQ)
and those in mod kQ. It yields a quiver embedding ι of the Auslander–Reiten quiver of 
mod kQ into the Auslander–Reiten quiver of the homotopy category diffperf(kQ).

We should remark that the study of differential modules themselves may have been 
neglected by the algebraists, however it is clear that the graded version, namely com-
plexes, play an important role in many parts of mathematics. Theorem 1 is an immediate 
consequence of well-known results concerning perfect complexes over kQ: the category 
of perfect complexes is a Frobenius category, thus the corresponding stable category 
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