

Generation of finite simple groups by an involution and an element of prime order

Carlisle S.H. King
Imperial College London, SW7 2AZ, United Kingdom

A R T I C L E I N F O

Article history:
Received 15 March 2016
Available online 16 January 2017
Communicated by Gunter Malle

Keywords:

Finite group theory
Generation of finite groups
Classical groups

A B S T R A C T

We prove that every non-abelian finite simple group is generated by an involution and an element of prime order.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Given a finite simple group G, it is natural to ask which elements generate G. Results of Miller [26], Steinberg [36], Aschbacher and Guralnick [2] prove that every finite simple group is generated by a pair of elements. A natural refinement is then to ask whether the orders of the generating elements may be restricted: given a finite simple group G and a pair of positive integers (a, b), does there exist a pair of elements $x, y \in G$ with x of order a and y of order b such that $G=\langle x, y\rangle$? If such a pair exists, we say G is (a, b)-generated.

As two involutions generate a dihedral group, the smallest pair of interest is $(2,3)$. The question of which finite simple groups are (2,3)-generated has been studied extensively. All alternating groups A_{n} except for $n=3,6,7,8$ are (2,3)-generated by [26].

[^0]All but finitely many simple classical groups not equal to $P S p_{4}\left(2^{a}\right), P S p_{4}\left(3^{a}\right)$ are $(2,3)$-generated by [21]. In fact, recent work by Pellegrini [29] completes the classification of the (2,3)-generated finite simple projective special linear groups, which shows that $P S L_{n}(q)$ is $(2,3)$-generated for $(n, q) \neq(2,9),(3,4),(4,2)$. There is also literature on the (2,3)-generation of many other simple classical groups $C l_{n}(q)$, showing a positive result for large n explicitly listed (for example, see [33]). All simple exceptional groups except for ${ }^{2} B_{2}\left(2^{2 m+1}\right)$ (which contain no elements of order 3) are $(2,3)$-generated by [22]. And all sporadic simple groups except for M_{11}, M_{22}, M_{23} and $M c L$ are (2,3)-generated by [42].

Nevertheless, the problem of determining exactly which finite simple groups are $(2,3)$-generated, or more generally $(2, p)$-generated for some prime p, remains open. In this paper, we prove:

Theorem 1. Every non-abelian finite simple group G is generated by an involution and an element of prime order.

By [26], for $n \geq 5$ and $n \neq 6,7,8$, the alternating groups A_{n} are (2,3)-generated, and by [27] these exceptions are $(2,5)$-generated. By [22] the exceptional groups not equal to ${ }^{2} B_{2}\left(2^{2 m+1}\right)$ are $(2,3)$-generated, and by [9] the Suzuki groups are (2,5)-generated. By [42] the sporadic groups not equal to $M_{11}, M_{22}, M_{23}, M c L$, are (2,3)-generated, and by [41] these exceptions are ($2, p$)-generated for $p=11,5,23,5$ respectively (in fact, all of these exceptions are (2,5)-generated, which can be seen using GAP). By Lemma 2.4 below, the 4 -dimensional symplectic groups $P S p_{4}\left(2^{a}\right)(a>1), P S p_{4}\left(3^{a}\right)$ are $(2,5)$-generated, and when combined with Lemmas 2.1 and 2.2 , this shows that all finite simple classical groups with natural module of dimension $n \leq 7$ (and $P \Omega_{8}^{+}(2)$) are $(2, p)$-generated for some $p \in\{3,5,7\}$.

By Zsigmondy's theorem [43], for $q, e>1$ with $(q, e) \neq\left(2^{a}-1,2\right),(2,6)$, there exists a prime divisor $r=r_{q, e}$ of $q^{e}-1$ such that r does not divide $q^{i}-1$ for $i<e$. We call r a primitive prime divisor of $q^{e}-1$. Notice that, in general, $r_{q, e}$ is not uniquely determined by (q, e). In the group $\left(\mathbb{F}_{r}\right)^{\times}, q$ has order e, and so $r \equiv 1 \bmod e$. In view of the above discussion, Theorem 1 follows from the following result.

Theorem 2. Let G be a finite simple classical group with natural module of dimension n over $\mathbb{F}_{q^{\delta}}$, where $\delta=2$ if G is unitary and $\delta=1$ otherwise. Assume $n \geq 8$ and $G \neq P \Omega_{8}^{+}(2)$. Let r be a primitive prime divisor of $q^{e}-1$, where e is listed in Table 1 . Then G is $(2, r)$-generated.

We note that r is well-defined for the groups described in Theorem 2.
There is a large literature on other aspects of the generation of finite simple groups, and we note just a few results. In [24], it is shown that every non-abelian finite simple group other than $\mathrm{PSU}_{3}(3)$ is generated by three involutions. In [11], and proved independently in [35], it is shown that, given a finite simple group G, there exists a conjugacy

https://daneshyari.com/en/article/5772079

Download Persian Version:
https://daneshyari.com/article/5772079

Daneshyari.com

[^0]: E-mail address: carlisle.king10@ic.ac.uk.

