Journal of Algebra 478 (2017) 153-173

Generation of finite simple groups by an involution and an element of prime order

Carlisle S.H. King

Imperial College London, SW7 2AZ, United Kingdom

ARTICLE INFO

Article history: Received 15 March 2016 Available online 16 January 2017 Communicated by Gunter Malle

Keywords: Finite group theory Generation of finite groups Classical groups

АВЅТ ВАСТ

We prove that every non-abelian finite simple group is generated by an involution and an element of prime order. © 2017 Elsevier Inc. All rights reserved.

1. Introduction

Given a finite simple group G, it is natural to ask which elements generate G. Results of Miller [26], Steinberg [36], Aschbacher and Guralnick [2] prove that every finite simple group is generated by a pair of elements. A natural refinement is then to ask whether the orders of the generating elements may be restricted: given a finite simple group Gand a pair of positive integers (a, b), does there exist a pair of elements $x, y \in G$ with x of order a and y of order b such that $G = \langle x, y \rangle$? If such a pair exists, we say G is (a, b)-generated.

As two involutions generate a dihedral group, the smallest pair of interest is (2,3). The question of which finite simple groups are (2,3)-generated has been studied extensively. All alternating groups A_n except for n = 3, 6, 7, 8 are (2,3)-generated by [26].

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2016.12.031 \\ 0021-8693/ © 2017 Elsevier Inc. All rights reserved.$

E-mail address: carlisle.king10@ic.ac.uk.

All but finitely many simple classical groups not equal to $PSp_4(2^a), PSp_4(3^a)$ are (2,3)-generated by [21]. In fact, recent work by Pellegrini [29] completes the classification of the (2,3)-generated finite simple projective special linear groups, which shows that $PSL_n(q)$ is (2,3)-generated for $(n,q) \neq (2,9), (3,4), (4,2)$. There is also literature on the (2,3)-generation of many other simple classical groups $Cl_n(q)$, showing a positive result for large n explicitly listed (for example, see [33]). All simple exceptional groups except for ${}^2B_2(2^{2m+1})$ (which contain no elements of order 3) are (2,3)-generated by [22]. And all sporadic simple groups except for M_{11}, M_{22}, M_{23} and McL are (2,3)-generated by [42].

Nevertheless, the problem of determining exactly which finite simple groups are (2,3)-generated, or more generally (2,p)-generated for some prime p, remains open. In this paper, we prove:

Theorem 1. Every non-abelian finite simple group G is generated by an involution and an element of prime order.

By [26], for $n \ge 5$ and $n \ne 6, 7, 8$, the alternating groups A_n are (2, 3)-generated, and by [27] these exceptions are (2, 5)-generated. By [22] the exceptional groups not equal to ${}^{2}B_{2}(2^{2m+1})$ are (2, 3)-generated, and by [9] the Suzuki groups are (2, 5)-generated. By [42] the sporadic groups not equal to $M_{11}, M_{22}, M_{23}, McL$, are (2, 3)-generated, and by [41] these exceptions are (2, p)-generated for p = 11, 5, 23, 5 respectively (in fact, all of these exceptions are (2, 5)-generated, which can be seen using GAP). By Lemma 2.4 below, the 4-dimensional symplectic groups $PSp_4(2^a)$ (a > 1), $PSp_4(3^a)$ are (2, 5)-generated, and when combined with Lemmas 2.1 and 2.2, this shows that all finite simple classical groups with natural module of dimension $n \le 7$ (and $P\Omega_8^+(2)$) are (2, p)-generated for some $p \in \{3, 5, 7\}$.

By Zsigmondy's theorem [43], for q, e > 1 with $(q, e) \neq (2^a - 1, 2), (2, 6)$, there exists a prime divisor $r = r_{q,e}$ of $q^e - 1$ such that r does not divide $q^i - 1$ for i < e. We call r a primitive prime divisor of $q^e - 1$. Notice that, in general, $r_{q,e}$ is not uniquely determined by (q, e). In the group $(\mathbb{F}_r)^{\times}$, q has order e, and so $r \equiv 1 \mod e$. In view of the above discussion, Theorem 1 follows from the following result.

Theorem 2. Let G be a finite simple classical group with natural module of dimension n over $\mathbb{F}_{q^{\delta}}$, where $\delta = 2$ if G is unitary and $\delta = 1$ otherwise. Assume $n \geq 8$ and $G \neq P\Omega_8^+(2)$. Let r be a primitive prime divisor of $q^e - 1$, where e is listed in Table 1. Then G is (2, r)-generated.

We note that r is well-defined for the groups described in Theorem 2.

There is a large literature on other aspects of the generation of finite simple groups, and we note just a few results. In [24], it is shown that every non-abelian finite simple group other than $PSU_3(3)$ is generated by three involutions. In [11], and proved independently in [35], it is shown that, given a finite simple group G, there exists a conjugacy Download English Version:

https://daneshyari.com/en/article/5772079

Download Persian Version:

https://daneshyari.com/article/5772079

Daneshyari.com