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A subset S of a group G invariably generates G if G =
(s9¢)|s € S) for every choice of g(s) € G,s € S. We say
that a group G is tnvariably generated if such S exists, or
equivalently, if S = G invariably generates G. In this paper,
we study invariable generation of Thompson groups. We show
that Thompson group F' is invariably generated by a finite
set, whereas Thompson groups 7" and V are not invariably
generated.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Recall that a subset S of a group G invariably generates G if G = (s9®)|s € S) for

every choice of g(s) € G, s € S. One says that a group G is invariably generated, or shortly

IG, if such S exists, or equivalently if S = G invariably generates G. The term “invariable
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generation” was coined by Dixon [3] in his study of generation of Galois groups, where
elements are given only up to conjugacy. Invariably generated groups were studied before
by Wiegold [14,15] under different terminology: A group G is invariably generated if and
only if no proper subgroup of G meets every conjugacy class. This is equivalent to saying
that every transitive permutation representation of G on a non-singleton set admits a
fixed-point-free element. Following [10], we say that G is finitely invariably generated, or
shortly FIG, if there is a finite subset S C G which invariably generates G.

A simple counting argument shows that every finite group is IG. Obviously, abelian
groups are IG. More generally, J. Wiegold [14] showed that the class of IG groups is
closed under extensions, hence contains all virtually solvable groups. Clearly, this class
is also closed to quotients. On the other hand, the class of IG groups is not closed under
direct unions; for instance the (locally finite) group of finitely supported permutations
of N is clearly not IG, since every element fixes some point in N. Moreover, Wiegold
[15] gave an example of an IG group whose commutator subgroup is not IG, proving in
particular that the class IG is not subgroup closed.

In [14], Wiegold proved that the free group F' = (a,b) is not IG by producing a
list L of conjugacy class representatives which are jointly independent (i.e., that freely
generate a free group of infinite rank). To recall his construction, let {w,} be conjugacy
class representatives which start and end with a non-zero power of b, then take L =
{w?" : n € N}. T. Gelander proved in [4] that convergence groups, and in particular
Gromov hyperbolic groups and relatively hyperbolic groups, are not IG, confirming a
conjecture from [10]. Gelander and Meiri [5] established various examples of arithmetic
groups possessing the Congruence Subgroup Property which are not IG, providing a
negative answer to a question from [10].

The notion of finite invariant generation is more subtle. For example, it is still unknown
weather every finitely generated solvable group is FIG. Kantor, Lubotzky and Shalev [10]
proved that a finitely generated linear group is finitely invariably generated if and only
if it is virtually solvable.

The main result of the paper is summarized in the following theorem:

Theorem 1. Thompson’s group F is finitely invariably generated. The Thompson groups
T and V are not invariably generated.

2. Thompson group F
2.1. F as a group of homeomorphisms

Recall that Thompson group F' is the group of all piecewise linear homeomorphisms of
the interval [0, 1] with finitely many breakpoints where all breakpoints are finite dyadic
and all slopes are integer powers of 2. The group F' is generated by two functions zy and
x1 defined as follows [2]:
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