

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Regular subgroups of the affine group with no translations

ALGEBRA

M.A. Pellegrini*, M.C. Tamburini Bellani

Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via Musei 41, I-25121 Brescia, Italy

A R T I C L E I N F O

Article history: Received 17 August 2016 Available online xxxx Communicated by Gernot Stroth

MSC: 20B35 15A63 15A21

Keywords: Regular subgroup Affine group Translations

ABSTRACT

Given a regular subgroup R of $AGL_n(\mathbb{F})$, one can ask if R contains nontrivial translations. A negative answer to this question was given by Liebeck, Praeger and Saxl for $AGL_2(p)$ $(p \ a \ prime)$, $AGL_3(p)$ $(p \ odd)$ and for $AGL_4(2)$. A positive answer was given by Hegedűs for $AGL_n(p)$ when $n \ge 4$ if p is odd and for n = 3 or $n \ge 5$ if p = 2. A first generalization to finite fields of Hegedűs' construction was recently obtained by Catino, Colazzo and Stefanelli. In this paper we give examples of such subgroups in $AGL_n(\mathbb{F})$ for any $n \ge 5$ and any field \mathbb{F} . For n < 5 we provide necessary and sufficient conditions for their existence, assuming R to be unipotent if char $\mathbb{F} = 0$.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Consider the affine group

$$\operatorname{AGL}_{n}(\mathbb{F}) = \left\{ \begin{pmatrix} 1 & v \\ 0 & A \end{pmatrix} : v \in \mathbb{F}^{n}, \ A \in \operatorname{GL}_{n}(\mathbb{F}) \right\}$$

* Corresponding author.

E-mail addresses: marcoantonio.pellegrini@unicatt.it (M.A. Pellegrini), mariaclara.tamburini@gmail.com (M.C. Tamburini Bellani).

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2017.01.045} 0021\mathcal{eq:http://dx.doi.org/10.1016/j.jalgebra.2017.01.045} 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2017.01.045} 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2017.01.045} 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2017.01.045} 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2017.01.045} 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2017.01.045} 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2017.01.045} 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2017.01.045} 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2017.01.045} 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2017.01.045} 0$

acting on the right on the row vector space \mathbb{F}^{n+1} , whose canonical basis will be denoted by $\{e_0, e_1, \ldots, e_n\}$. Furthermore, denote by

$$\pi : \mathrm{AGL}_n(\mathbb{F}) \to \mathrm{GL}_n(\mathbb{F})$$

the obvious epimorphism $\begin{pmatrix} 1 & v \\ 0 & A \end{pmatrix} \mapsto A$, whose kernel is the translation group \mathcal{T} . A subgroup R of $AGL_n(\mathbb{F})$ is called *regular* if it acts regularly on the set of the affine points: namely if, for every $v \in \mathbb{F}^n$, there exists a unique element of R having the affine point (1, v) as first row.

The problem of the existence of regular subgroups of $AGL_n(\mathbb{F})$ having no translations other than the identity was first raised by Liebeck, Praeger and Saxl in [4]. Clearly, for such subgroups we have

$$R \cong \pi(R). \tag{1.1}$$

In the case of fields $\mathbb{F} = \mathbb{F}_p$ of prime order p, the above-mentioned authors also proved that no such regular subgroups exist for $AGL_2(p)$, any p, $AGL_3(p)$, p > 2, and for $AGL_4(2)$. The first positive examples, which proved their existence, were constructed by Hegedűs in [2], in the case $\mathbb{F} = \mathbb{F}_p$. More precisely, he proved that $AGL_n(p)$ contains a regular subgroup having no translations other than the identity, whenever (i) n = 3 or $n \geq 5$, if p = 2 or (ii) $n \geq 4$, if p > 2. The crucial property that he used is the existence of a non-degenerate quadratic form over \mathbb{F}_p^{n-1} and an embedding of the additive group $(\mathbb{F}_p, +)$ into the corresponding orthogonal group. Clearly this property holds for much more general fields than \mathbb{F}_p . This fact was recently used by Catino, Colazzo and Stefanelli who extended Hegedűs' result to $\mathbb{F} = \mathbb{F}_{p^{\ell}}, [1].$

In Section 2 we extend to an arbitrary field \mathbb{F} the negative results of [4], giving an independent proof of the following facts:

Theorem 1.1. Let R be a regular subgroup of $AGL_n(\mathbb{F})$ and suppose that R is unipotent if char $\mathbb{F} = 0$. Assume that one of the following conditions holds:

(i) n < 2;(ii) n = 3 and $\mathbb{F} \neq \mathbb{F}_2$; (iii) n = 4 and char $\mathbb{F} = 2$.

Then R contains a nontrivial translation.

On the other hand, using Hegedűs' method, we generalize [1] proving the following result.

Theorem 1.2. Let \mathbb{F} be any field and W be a subspace of \mathbb{F} , viewed as a vector space over its prime field \mathbb{F}_0 . Assume that one of the following conditions holds:

Download English Version:

https://daneshyari.com/en/article/5772095

Download Persian Version:

https://daneshyari.com/article/5772095

Daneshyari.com