Journal of Algebra 478 (2017) 484–505

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Complete classification of the torsion structures of rational elliptic curves over quintic number fields

Enrique González-Jiménez¹

Universidad Autónoma de Madrid, Departamento de Matemáticas, Madrid, Spain

A R T I C L E I N F O

Article history: Received 9 June 2016 Available online 15 February 2017 Communicated by Gerhard Hiss

MSC: primary 11G05, 14G05 secondary 14H52, 11R21

Keywords: Elliptic curves Torsion subgroup Rationals Quintic number fields

ABSTRACT

We classify the possible torsion structures of rational elliptic curves over quintic number fields. In addition, let E be an elliptic curve defined over \mathbb{Q} and let $G = E(\mathbb{Q})_{\text{tors}}$ be the associated torsion subgroup. We study, for a given G, which possible groups $G \subseteq H$ could appear such that $H = E(K)_{\text{tors}}$, for $[K : \mathbb{Q}] = 5$. In particular, we prove that at most there is one quintic number field K such that the torsion grows in the extension K/\mathbb{Q} , i.e., $E(\mathbb{Q})_{\text{tors}} \subseteq E(K)_{\text{tors}}$.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let E/K be an elliptic curve defined over a number field K. The Mordell–Weil Theorem states that the set of K-rational points, E(K), is a finitely generated abelian group. Denote by $E(K)_{\text{tors}}$, the torsion subgroup of E(K), which is isomorphic to $\mathcal{C}_m \times \mathcal{C}_n$ for two positive integers m, n, where m divides n and where \mathcal{C}_n is a cyclic group of order n.

One of the main goals in the theory of elliptic curves is to characterize the possible torsion structures over a given number field, or over all number fields of a given degree.

E-mail address: enrique.gonzalez.jimenez@uam.es.

¹ The author was partially supported by the grant MTM2015-68524-P.

In 1978 Mazur [25] published a proof of Ogg's conjecture (previously established by Beppo Levi), a milestone in the theory of elliptic curves. In that paper, he proved that the possible torsion structures over \mathbb{Q} belong to the set:

$$\Phi(1) = \{ \mathcal{C}_n \mid n = 1, \dots, 10, 12 \} \cup \{ \mathcal{C}_2 \times \mathcal{C}_{2m} \mid m = 1, \dots, 4 \},\$$

and that any of them occurs infinitely often. A natural generalization of this theorem is as follows. Let $\Phi(d)$ be the set of possible isomorphic torsion structures $E(K)_{\text{tors}}$, where K runs through all number fields K of degree d and E runs through all elliptic curves over K. Thanks to the uniform boundedness theorem [26], $\Phi(d)$ is a finite set. Then the problem is to determine $\Phi(d)$. Mazur obtained the rational case (d = 1). The generalization to quadratic fields (d = 2) was obtained by Kamienny, Kenku and Momose [17,22]. For $d \geq 3$ a complete answer for this problem is still open, although there have been some advances in the last years.

However, more is known about the subset $\Phi^{\infty}(d) \subseteq \Phi(d)$ of torsion subgroups that arise for infinitely many $\overline{\mathbb{Q}}$ -isomorphism classes of elliptic curves defined over number fields of degree d. For d = 1 and d = 2 we have $\Phi^{\infty}(d) = \Phi(d)$, the cases d = 3 and d = 4have been determined by Jeon et al. [15,16], and recently the cases d = 5 and d = 6 by Derickx and Sutherland [7].

Restricting our attention to the complex multiplication case, we denote $\Phi^{\text{CM}}(d)$ the analogue of the set $\Phi(d)$ but restricting to elliptic curves with complex multiplication (CM elliptic curves in the sequel). In 1974 Olson [30] determined the set of possible torsion structures over \mathbb{Q} of CM elliptic curves:

$$\Phi^{\mathrm{CM}}(1) = \{\mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3, \mathcal{C}_4, \mathcal{C}_6, \mathcal{C}_2 \times \mathcal{C}_2\}.$$

The quadratic and cubic cases were determined by Zimmer et al. [27,8,31]; and recently, Clark et al. [5] have computed the sets $\Phi^{\text{CM}}(d)$, for $4 \leq d \leq 13$. In particular, they proved

$$\Phi^{\mathrm{CM}}(5) = \Phi^{\mathrm{CM}}(1) \cup \{\mathcal{C}_{11}\}.$$

In addition to determining $\Phi(d)$, there are many authors interested in the question of how the torsion grows when the field of definition is enlarged. We focus our attention when the underlying field is \mathbb{Q} . In analogy to $\Phi(d)$, let $\Phi_{\mathbb{Q}}(d)$ be the subset of $\Phi(d)$ such that $H \in \Phi_{\mathbb{Q}}(d)$ if there is an elliptic curve E/\mathbb{Q} and a number field K of degree d such that $E(K)_{\text{tors}} \simeq H$. One of the first general result is due to Najman [29], who determined $\Phi_{\mathbb{Q}}(d)$ for d = 2, 3. Chou [4] has given a partial answer to the classification of $\Phi_{\mathbb{Q}}(4)$. Recently, the author with Najman [11] have completed the classification of $\Phi_{\mathbb{Q}}(4)$ and $\Phi_{\mathbb{Q}}(p)$ for p prime. Moreover, in [11] it has been proved that $E(K)_{\text{tors}} = E(\mathbb{Q})_{\text{tors}}$ for all elliptic curves E defined over \mathbb{Q} and all number fields K of degree d, where d is not divisible by a prime ≤ 7 . In particular, $\Phi_{\mathbb{Q}}(d) = \Phi(1)$ if d is not divisible by a prime ≤ 7 .

Our first result determines $\Phi_{\mathbb{Q}}(5)$.

Download English Version:

https://daneshyari.com/en/article/5772099

Download Persian Version:

https://daneshyari.com/article/5772099

Daneshyari.com