

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Permutability of injectors with a central socle in a finite solvable group

ALGEBRA

Rex Dark^{a,1}, Arnold D. Feldman^b, María Dolores Pérez-Ramos^{c,*,2}

^a School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, University Road, Galway, Ireland

^b Franklin and Marshall College, Lancaster, PA 17604-3003, USA

^c Departament de Matemàtiques, Universitat de València, C/ Doctor Moliner 50,

46100 Burjassot (València), Spain

ARTICLE INFO

Article history: Received 2 August 2016 Available online 3 January 2017 Communicated by Gernot Stroth

MSC: 20D10 20D20

Keywords: Finite solvable group theory Fitting class Injector Central socle

ABSTRACT

In response to an Open Question of Doerk and Hawkes [5, IX Section 3, page 615], we shall show that if Z^{π} is the Fitting class formed by the finite solvable groups whose π -socle is central (where π is a set of prime numbers), then the Z^{π} -injectors of a finite solvable group G permute with the members of a Sylow basis in G. The proof depends on the properties of certain extraspecial groups [4].

© 2016 Elsevier Inc. All rights reserved.

 $\ast\,$ Corresponding author.

E-mail addresses: rex.dark@nuigalway.ie (R. Dark), afeldman@fandm.edu (A.D. Feldman), Dolores.Perez@uv.es (M.D. Pérez-Ramos).

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2016.11.041 \\ 0021\mathcal{eq:http://dx.doi.org/10.1016/j.jalgebra.2016.11.041 \\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2016.11.041 \\ 0021\mathcal{eq:http://dx.doi.0016/j$

¹ The first author is grateful to the University of Valencia for its hospitality.

 $^{^2\,}$ The third author has been supported by Proyecto MTM2014-54707-C3-1-P, Ministerio de Economía y Competitividad, Spain.

1. Introduction

Throughout this Introduction, let H be a subgroup of a finite solvable group G, and let $\pi = \{p_1, p_2, \ldots, p_m\}$ be a set of prime numbers. We use the notation of Doerk and Hawkes [5], and as in [3], we define Z^{π} to be the class of finite solvable groups Hsuch that $\operatorname{Soc}_{\pi} H \leq \mathbb{Z}(H)$, and as before write $Z^p = Z^{\{p\}}$. These classes are Fitting classes, so that any finite solvable group possesses a conjugacy class of injectors for any given such class. In [3], we described inductive methods for constructing Z^{π} -injectors. In this work, we prove that these injectors are permutable. This means that for any such injector H there exists a *Sylow basis* Σ in G such that H permutes with every element of Σ , where a Sylow basis is a set of Sylow subgroups of G, with $|\Sigma \cap \operatorname{Syl}_p G| = 1$ for each prime number p, such that all pairs of members of Σ permute with each other [5, I(4.7)]. Doerk and Hawkes characterize the property of permutability as the one that separates manageable from unmanageable Fitting classes [5, p. 615], making the often difficult determination of permutability of a Fitting class the key to obtaining a thorough analysis of its properties. We prove:

Theorem. If π is a set of prime numbers, and G is a finite solvable group, then the \mathcal{Z}^{π} -injectors of G are system permutable in G.

Corollary. Let G = HK be a solvable semidirect product, with $K \triangleleft G$ and $H \cap K = 1$, and suppose U is an $\mathbf{F}_p G$ -module (where p is a prime number, and \mathbf{F}_p is the field of order p). Choose a Sylow p-subgroup P of H, and assume that $p \nmid |K|$. Let $\operatorname{Soc}_{\mathbf{F}_p G} U$ be the socle of U (generated by the minimal submodules). If $\mathbf{C}_G(\operatorname{Soc}_{\mathbf{F}_p G} U) = 1$ and $\mathbf{C}_G(\mathbf{C}_U(P)) = H$, then there is a Sylow basis Σ of K, such that H normalizes each subgroup in Σ .

Proof. We can deduce the Corollary from the Theorem, using some of the results quoted in Section 2, as follows. Form the natural semidirect products

$$G_0 = GU, \quad H_0 = HU, \quad K_0 = KU, \quad P_0 = PU.$$

Then $U = \mathbf{C}_{G_0}(\operatorname{Soc}_{\mathbf{F}_p G_0} U)$, so U is the \mathbb{Z}^p -radical of G_0 by Lemma 2.7(c). Also P_0 is a Sylow p-subgroup of G_0 and $H_0 = \mathbf{C}_{G_0}(\mathbf{C}_U(P_0))$, so H_0 is a \mathbb{Z}^p -injector of G_0 by Lemma 2.7(f) (or [5, IX(4.19)]). Hence H_0 is system permutable in G_0 by the Theorem, and it follows from Lemma 2.4(d) that $H \cong H_0/U$ normalizes a Sylow basis Σ in $K \cong K_0/U$. \Box

The lay-out of the paper is as follows: In Section 2 we state some known results and prove results on a variety of topics for later use, and in Section 3 we quote some results about extraspecial groups [4]. We begin a general study of counterexamples to permutability claims for injectors in Section 4, introducing the specific case of permutability of Z^{π} -injectors in Section 5. Download English Version:

https://daneshyari.com/en/article/5772130

Download Persian Version:

https://daneshyari.com/article/5772130

Daneshyari.com