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1. Introduction and statement

An integer lattice quasi-periodic Schrédinger operator is an operator Hy(x) on [2(Z) >
¥ = {¥n}nez, defined by

[Hx(7) Y]n = —(Yng1 + Yno1 — 2¢n) + A f(2 + nw) P
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where A # 0 is a coupling constant, x € T = R/Z is a phase parameter that introduces
some randomness into the system, f: T — R is a (bounded) potential function, and
w € T is a fixed irrational frequency.

Note that Hy(z) is a bounded, self-adjoint operator. Moreover, due to the ergodicity
of the system, the spectral properties of the family of operators {Hy(z): x € T} are
independent of z almost surely.

In this paper we study a more general Schrodinger-like operator on a band integer
lattice (which in some sense may be regarded as an approximation of a higher dimensional
lattice). Before we define such operators, let us introduce some notations and terminology.

All throughout, if m € N and if M: T — Mat,,(R) is any matrix-valued function, we
denote by M T (z) the transpose of M (x).

We say that M (x) has no constant eigenvalues if for any w € C, we have det[M (z) —
w ] # 0 as a function of x.

Furthermore, given a frequency w € T, for all n € Z we denote by M, (x) the quasi-
periodic matrix-valued function

M, (z) := M(x + nw).

All such matrix-valued functions M will be assumed real analytic (meaning that their
entries are real analytic functions).

Let us then denote by C¥(T, Mat,,(R)) the space of all analytic functions M: T —
Mat,,(R) having a holomorphic, continuous up to the boundary extension' to A, :=
{z € C:1—-r < |z| <1+ r}, the annulus of width 2r around the torus T. We endow
this space with the uniform norm |[M ||, :=sup_c4 [[M(2)].

Let I € N be the width of the band lattice, fix an irrational frequency w € T and let
W, R, F € C¥(T,Mat;(R)). Assume that for all phases x € T, R(z) and F(z) € Sym;(R),

i.e they are symmetric matrices.

A quasi-periodic block Jacobi operator is an operator H = Hy(z) acting on [*(Z x
{1,...,1}, R) ~ I*(Z,R!) by

[HA@) Gl = = (Wos1 () Yr + W, (2) Pnor + Ra(@) ) + AFo(2) by (L1)

where 1/; = {Jn}nEZ € I2(Z,R!) is any state, and as before, x € T is a phase and X\ # 0
is a coupling constant.

This model contains all quasi-periodic, finite range hopping Schrédinger operators on
integer or band integer lattices. The hopping term is given by the “weighted” Laplacian:

-,

[Aw (z) Y]n = Wit (z) Jn-i-l + VVnT (z) Jn—l + Ry() Jn )

1 We warn the reader that we identify the torus T = R/Z (an additive group) with the unit circle S* C C

(a multiplicative group) via the map z 4+ Z +— e(x) := ¢*>™*, but we maintain the additive notation, e.g. we
write = + w instead of e(x)e(w).
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