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nonlinear plate equation, the nonlinear transport equation,
as well as certain classes of equations with nonlocal terms.
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1. Introduction

Let X be a Hilbert space. Throughout the paper, we denote by || - ||x the norm on
X and by (-,-)x the corresponding scalar product. Let A : D(A) — X be a densely
defined skew-adjoint operator, and let B : X — X be a nontrivial bounded selfadjoint
nonnegative operator. Let F': X — X be a (nonlinear) mapping, assumed to be Lipschitz
continuous on bounded subsets of X. We consider the differential system

u'(t) + Au(t) + BF (u(t)) = 0. (1)

If F = 0 then the system (1) is conservative, and for every ug € D(A), there exists
a unique solution u(-) € C°(0,+o00; D(A)) N C1(0,+00; X) such that u(0) = ug, which
satisfies moreover ||u(t)||x = ||u(0)] x, for every ¢ > 0.

If F' # 0 then the system (1) is expected to be dissipative if the nonlinearity F' has
“the good sign”. Defining the energy of a solution u of (1) by

Eu(t) = S llu@®)x, (2)

we have, as long as the solution is well defined,
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