

Contents lists available at ScienceDirect

Journal of Functional Analysis

Nonlinear damped partial differential equations and their uniform discretizations

Fatiha Alabau-Boussouira ^{a,1}, Yannick Privat ^{b,*}, Emmanuel Trélat ^c

- ^a Université de Lorraine, IECL, UMR 7502, 57045 Metz Cedex 1, France
- ^b CNRS, Sorbonne Universités, UPMC Univ Paris 06, UMR 7598,
- Laboratoire Jacques-Louis Lions, F-75005, Paris, France
- ^c Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7598,
- Laboratoire Jacques-Louis Lions, and Institut Universitaire de France, F-75005, Paris, France

ARTICLE INFO

Article history: Received 30 June 2016 Accepted 6 March 2017 Available online 28 March 2017 Communicated by F. Béthuel

MSC: 37L15 93D15 35B35 65N22

Keywords: Stabilization Dissipative systems Space/time discretization Optimal weight convexity method

ABSTRACT

We establish sharp energy decay rates for a large class of nonlinearly first-order damped systems, and we design discretization schemes that inherit of the same energy decay rates, uniformly with respect to the space and/or time discretization parameters, by adding appropriate numerical viscosity terms. Our main arguments use the optimal-weight convexity method and uniform observability inequalities with respect to the discretization parameters. We establish our results, first in the continuous setting, then for space semi-discrete models, and then for time semi-discrete models. The full discretization is then inferred from the previous results, by adapting the ideas to deal with linear systems.

Our results cover, for instance, the Schrödinger equation with nonlinear damping, the nonlinear wave equation, the

^{*} Corresponding author.

E-mail addresses: fatiha.alabau@univ-lorraine.fr (F. Alabau-Boussouira), yannick.privat@upmc.fr (Y. Privat), emmanuel.trelat@upmc.fr (E. Trélat).

¹ En délégation CNRS au Laboratoire Jacques-Louis Lions, UMR 7598.

nonlinear plate equation, the nonlinear transport equation, as well as certain classes of equations with nonlocal terms. © 2017 Elsevier Inc. All rights reserved.

Contents

1	Testano d		3,	-0	
1.					
2.	Continuous setting			54	
	2.1.	Main re	sult	54	
	2.2.	Exampl		59	
		2.2.1.	Schrödinger equation with nonlinear damping	59	
		2.2.2.	Wave equation with nonlinear damping	60	
		2.2.3.	Plate equation with nonlinear damping	61	
		2.2.4.	Transport equation with nonlinear damping	62	
		2.2.5.	Dissipative equations with nonlocal terms	62	
	2.3.	Proof of	f Theorem 1	64	
3.	Discretization issues: uniform decay results			72	
	3.1.	Semi-di	scretization in space	72	
		3.1.1.	Main result	73	
		3.1.2.	Proof of Theorem 2	78	
	3.2.	Semi-di	scretization in time	84	
		3.2.1.	Main result	85	
		3.2.2.	Proof of Theorem 3	86	
	3.3.	Full disc	cretization	96	
4.	Conclu	usion and	d perspectives	98	
Ackno	Acknowledgments				
	deferences				

1. Introduction

Let X be a Hilbert space. Throughout the paper, we denote by $\|\cdot\|_X$ the norm on X and by $\langle\cdot,\cdot\rangle_X$ the corresponding scalar product. Let $A:D(A)\to X$ be a densely defined skew-adjoint operator, and let $B:X\to X$ be a nontrivial bounded selfadjoint nonnegative operator. Let $F:X\to X$ be a (nonlinear) mapping, assumed to be Lipschitz continuous on bounded subsets of X. We consider the differential system

$$u'(t) + Au(t) + BF(u(t)) = 0.$$
 (1)

If F = 0 then the system (1) is conservative, and for every $u_0 \in D(A)$, there exists a unique solution $u(\cdot) \in C^0(0, +\infty; D(A)) \cap C^1(0, +\infty; X)$ such that $u(0) = u_0$, which satisfies moreover $||u(t)||_X = ||u(0)||_X$, for every $t \ge 0$.

If $F \neq 0$ then the system (1) is expected to be dissipative if the nonlinearity F has "the good sign". Defining the energy of a solution u of (1) by

$$E_u(t) = \frac{1}{2} ||u(t)||_X^2, \tag{2}$$

we have, as long as the solution is well defined,

Download English Version:

https://daneshyari.com/en/article/5772182

Download Persian Version:

https://daneshyari.com/article/5772182

<u>Daneshyari.com</u>