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In this paper we present a new proof of the sufficiency 
theorem for strong local minimizers concerning C1-extremals 
at which the second variation is strictly positive. The results 
are presented in the quasiconvex setting, in accordance with 
the original statement by Grabovsky and Mengesha [31]. The 
strategy that we follow relies on a Decomposition Theorem
that allows to split a sequence of variations into its oscillating 
and its concentrating parts, as well as on a sufficiency 
result according to which smooth extremals are spatially-local 
minimizers. Furthermore, we prove partial regularity up to the 
boundary for strong local minimizers in the non-homogeneous 
case and a full regularity result for Lipschitz extremals with 
gradient of vanishing mean oscillation. As a consequence, we 
also establish a sufficiency result for this class of extremals. 
The regularity results are established via a blow-up argument.
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1. Introduction

It is well known that minimizers of variational integrals satisfy the Euler–Lagrange 
equations and the nonnegativity of the second variation. On the other hand, for non-
convex integrands we are faced with the possibility of encountering local minimizers that 
are not globally minimizing the functional. Hence, an underlying problem in the Calcu-
lus of Variations has been to find sufficient conditions guaranteeing that an extremal at 
which the second variation is positive is in fact a strong local minimizer.

This problem was solved by Weierstrass in the 19th century for the case in which the 
admissible scalar functions have one single independent variable. Levi then provided a 
proof with a different method, which does not use the field theory originated from Weier-
strass’ work [44]. The sufficiency result was later generalized by Hestenes for functions 
of several variables [34].

On the other hand, Meyers showed that the notion of quasiconvexity developed by 
Morrey [48] is in a suitable sense a necessary condition for strong local minimizers [45]. 
Furthermore, Ball and Marsden established the concept of quasiconvexity at the free 
boundary in [6], where this was also shown to be a necessary condition for strong local 
minimizers satisfying mixed boundary conditions, that is, by allowing the minimizers to 
take free values on part of the boundary of their domain.

The importance of obtaining an adequate set of sufficient conditions for strong local 
minima in the vectorial case was highly motivated by applications coming from mate-
rials science. Ball foresaw that the natural way to extend Weierstrass condition to the 
vectorial case are the notions of quasiconvexity at the interior and at the free boundary. 
Furthermore, in [5, Section 6.2] it is conjectured that if a solution to the weak Euler–
Lagrange equation is sufficiently smooth, then the strict positivity of the second variation 
together with suitable versions of the quasiconvexity in the interior and at the boundary 
should guarantee that the extremal furnishes a strong local minimizer.

Further generalizations regarding Weierstrass problem were obtained by Taheri in 
[56], where Hestenes’ strategy is extended to the case of Lp-local minimizers.
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