

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Module tensor product of subnormal modules need not be subnormal

癯

Akash Anand, Sameer Chavan*

Indian Institute of Technology Kanpur, Kanpur, 208016, India

A R T I C L E I N F O

Article history: Received 30 August 2016 Accepted 4 February 2017 Available online 14 February 2017 Communicated by K. Seip

MSC: primary 46E20 secondary 46M05, 47B20

Keywords: Positive definite kernels Module tensor product Subnormality

ABSTRACT

Let $\kappa : \mathbb{D} \times \mathbb{D} \to \mathbb{C}$ be a diagonal positive definite kernel and let \mathscr{H}_{κ} denote the associated reproducing kernel Hilbert space of holomorphic functions on the open unit disc \mathbb{D} . Assume that $zf \in \mathscr{H}$ whenever $f \in \mathscr{H}$. Then \mathscr{H} is a Hilbert module over the polynomial ring $\mathbb{C}[z]$ with module action $p \cdot f \mapsto pf$. We say that \mathscr{H}_{κ} is a subnormal Hilbert module if the operator \mathscr{M}_z of multiplication by the coordinate function z on \mathscr{H}_{κ} is subnormal. N. Salinas (1988) [11] asked whether the module tensor product $\mathscr{H}_{\kappa_1} \otimes_{\mathbb{C}[z]} \mathscr{H}_{\kappa_2}$ of subnormal Hilbert modules \mathscr{H}_{κ_1} and \mathscr{H}_{κ_2} is again subnormal. In this regard, we describe all subnormal module tensor products $L^2_a(\mathbb{D}, w_{s_1}) \otimes_{\mathbb{C}[z]} L^2_a(\mathbb{D}, w_{s_2})$, where $L^2_a(\mathbb{D}, w_s)$ denotes the weighted Bergman Hilbert module with radial weight

$$w_s(z) = rac{1}{s\pi} |z|^{rac{2(1-s)}{s}} \ (z \in \mathbb{D}, \ s > 0).$$

In particular, the module tensor product $L_a^2(\mathbb{D}, w_s) \otimes_{\mathbb{C}[z]} L_a^2(\mathbb{D}, w_s)$ is never subnormal for any $s \geq 6$. Thus the answer to this question is no.

© 2017 Elsevier Inc. All rights reserved.

* Corresponding author. E-mail addresses: akasha@iitk.ac.in (A. Anand), chavan@iitk.ac.in (S. Chavan).

http://dx.doi.org/10.1016/j.jfa.2017.02.006 0022-1236/© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathscr{H} be a reproducing kernel Hilbert space of holomorphic functions defined on the unit disc \mathbb{D} such that $zf \in \mathscr{H}$ whenever $f \in \mathscr{H}$. Thus the linear operator \mathscr{M}_z of multiplication by the coordinate function z on \mathscr{H} is bounded. This allows us to realize \mathscr{H} as a *Hilbert module* over the polynomial ring $\mathbb{C}[z]$ with module action given by

$$(p, f) \in \mathbb{C}[z] \times \mathscr{H} \longmapsto p(\mathscr{M}_z)f \in \mathscr{H}.$$

Following [9], we say that the Hilbert module \mathscr{H} is *contractive* if the operator norm of the multiplication operator \mathscr{M}_z is at most 1. Further, we say that \mathscr{H} is *subnormal* if \mathscr{M}_z is subnormal, that is, \mathscr{M}_z has a normal extension in a Hilbert module containing \mathscr{H} (refer to [7] for a comprehensive account on subnormal operators). By Agler's Criterion [1, Theorem 3.1], \mathscr{H} is a contractive subnormal Hilbert module if and only if for every $f \in \mathscr{H}, \phi_f(n) = ||z^n f||^2 \ (n \in \mathbb{N})$ is completely monotone for every $f \in \mathscr{H}$. Recall from [5] that $\phi : \mathbb{N} \to (0, \infty)$ is *completely monotone* if

$$\sum_{j=0}^{m} (-1)^{j} \binom{m}{j} \phi(n+j) \ge 0 \text{ for all } m, n \in \mathbb{N}.$$

Remark 1.1. Note that if ϕ is a completely monotone sequence then so is ψ_m for any $m \in \mathbb{N}$, where $\psi_m(n) = \phi(m+n)$ $(n \in \mathbb{N})$.

We further note that, as a consequence of Hausdorff's solution to the Hausdorff's moment problem [5, Chapter 4, Proposition 6.11], \mathscr{H} is a contractive subnormal Hilbert module if and only if for every unit vector $f \in \mathscr{H}$, $\{||z^n f||^2\}_{n \in \mathbb{N}}$ is a Hausdorff moment sequence, that is, there exists a unique probability measure μ_f supported in [0, 1] such that

$$||z^n f||^2 = \int_{[0,1]} t^n d\mu_f \ (n \in \mathbb{N}).$$

In this text, we are primarily interested in the following one parameter family of subnormal Hilbert modules.

Example 1.2. For a real number s > 0, consider the Hilbert space $L^2_a(\mathbb{D}, w_s)$ of holomorphic functions defined on the open unit disc \mathbb{D} which are square integrable with respect to the weighted area measure $w_s dA$ with radial weight function

$$w_s(z) = \frac{1}{s\pi} |z|^{\frac{2(1-s)}{s}} \ (z \in \mathbb{D}).$$

Then $L^2_a(\mathbb{D}, w_s)$ is a Hilbert module over the polynomial ring $\mathbb{C}[z]$ (refer to [10] for the basic theory of weighted Bergman spaces). Since $L^2_a(\mathbb{D}, w_s)$ is a closed subspace of Download English Version:

https://daneshyari.com/en/article/5772200

Download Persian Version:

https://daneshyari.com/article/5772200

Daneshyari.com