

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

An unconditionally saturated Banach space with the scalar-plus-compact property

Antonis Manoussakis ^{a,1}, Anna Pelczar-Barwacz ^{b,*}, Michał Świętek ^b

ARTICLE INFO

Article history: Received 8 October 2016 Accepted 23 January 2017 Available online 7 February 2017 Communicated by G. Schechtman

MSC: 46B03

46B20

46B45

 $\begin{tabular}{ll} Keywords: \\ Bourgain-Delbaen space \\ \mathcal{L}_{∞}-space \\ Scalar-plus-compact property \\ Unconditionally saturated Banach space \\ \end{tabular}$

ABSTRACT

We construct a Bourgain–Delbaen \mathcal{L}_{∞} -space \mathfrak{X}_{Kus} with structure that is strongly heterogeneous: any bounded operator on \mathfrak{X}_{Kus} is a compact perturbation of a multiple of the identity, whereas the space \mathfrak{X}_{Kus} is saturated with unconditional basic sequences.

© 2017 Elsevier Inc. All rights reserved.

^a School of Environmental Engineering, Technical University of Crete, University Campus, 73100 Chania, Greece

^b Institute of Mathematics, Faculty of Mathematics and Computer Science, Jagiellonian University, Lojasiewicza 6, 30-348 Kraków, Poland

^{*} Corresponding author.

 $[\]label{lem:email$

¹ The first author was partially supported by the Bilateral Educational Programme, Greece-Poland 2015.

1. Introduction

J. Bourgain and F. Delbaen presented in [8] a brilliant method of constructing \mathscr{L}_{∞} -spaces with peculiar structure. Their method relies on a careful choice of an increasing sequence of finite dimensional subspaces $(F_n)_n$ of $\ell_{\infty}(\Gamma)$, with countably infinite Γ and each F_n uniformly isomorphic to $\ell_{\infty}^{dim F_n}$. A suitable choice of $(F_n)_n$ guarantees that the space $\overline{\bigcup_n F_n}$ is an \mathscr{L}_{∞} -space with no unconditional basis. The Bourgain–Delbaen example contains no isomorphic copy of c_0 , answering an old problem in the theory of \mathscr{L}_{∞} -spaces. Later R. Haydon [15] proved that this space is saturated with reflexive ℓ_p spaces and introduced the notation used nowadays. The Bourgain–Delbaen method was used to construct Banach spaces that solved several other long-standing conjectures on the structure of Banach spaces and showed that one may not hope for an ordinary classification of \mathscr{L}_{∞} -spaces as it happens in the C(K)-spaces case, see [1–3,10]. We refer to [7] and [8] for the properties of the classical Bourgain–Delbaen spaces.

In [2] a general Bourgain–Delbaen- \mathcal{L}_{∞} -space is defined and the authors show a remarkable fact that any separable \mathcal{L}_{∞} -space is isomorphic to such a space. We recall from [2] that a BD- \mathcal{L}_{∞} -space is a space $\mathfrak{X} \subset \ell_{\infty}(\Gamma)$, with Γ countable, associated to a sequence $(\Gamma_q, i_q)_{q \in \mathbb{N}}$, where $(\Gamma_q)_q$ is an increasing sequence of finite sets with $\Gamma = \cup_{q \in \mathbb{N}} \Gamma_q$ and $(i_q)_q$ are uniformly bounded compatible extension operators $i_q : \ell_{\infty}(\Gamma_q) \to \ell_{\infty}(\Gamma)$, i.e. $i_q(x)|_{\Gamma_q} = x$ and $i_q(x) = i_p(i_q(x)|_{\Gamma_p})$ for any q < p and $x \in \ell_{\infty}(\Gamma_q)$. The space $\mathfrak{X} = \mathfrak{X}_{(\Gamma_q, i_q)_q}$ is defined as $\mathfrak{X} = \overline{\langle d_\gamma : \gamma \in \Gamma \rangle}$, where d_γ is given by $d_\gamma = i_q(e_\gamma)$, with q chosen so that $\gamma \in \Gamma_q \setminus \Gamma_{q-1}$. An efficient method of defining particular examples of BD- \mathcal{L}_{∞} -spaces as quotients of canonical BD- \mathcal{L}_{∞} -spaces was given in [5]. The authors proved that given a BD- \mathcal{L}_{∞} -space $\mathfrak{X} \subset \ell_{\infty}(\Gamma)$ any so-called self-determined set $\Gamma' \subset \Gamma$ produces a further \mathcal{L}_{∞} -space $Y = \overline{\langle d_\gamma : \gamma \in \Gamma \setminus \Gamma' \rangle}$ and a BD- \mathcal{L}_{∞} -space \mathfrak{X}/Y , with the quotient map defined by the restriction of Γ to Γ' .

S.A. Argyros and R. Haydon in [3] used the Bourgain–Delbaen method in order to produce an \mathcal{L}_{∞} -space \mathfrak{X}_{AH} which is hereditary indecomposable (HI) i.e. contains no closed infinitely dimensional subspace which is a direct sum of further two closed infinitely dimensional subspaces (in particular the space \mathfrak{X}_{AH} admits no unconditional basic sequence), and with dual isomorphic to ℓ_1 . Moreover, using in an essential way the local unconditional structure imposed by the $\ell_{\infty}^{dimF_n}$ -spaces they proved that the space \mathfrak{X}_{AH} has the scalar-plus-compact property i.e. every bounded operator on the space is of the form $\lambda I + K$, with K compact and λ scalar.

Although it readily follows that there does not exist a Banach space with an unconditional basis and the scalar-plus-compact property, the latter property does not exclude rich unconditional structure inside the space. This is witnessed in [1], where it was shown that, among other spaces, any separable and uniformly convex Banach space embeds into an \mathcal{L}_{∞} -space with the scalar plus compact property. Therefore, a naturally arising question is whether there exists a Banach space with the scalar-plus-compact property that is saturated with unconditional basic sequences.

Download English Version:

https://daneshyari.com/en/article/5772209

Download Persian Version:

https://daneshyari.com/article/5772209

<u>Daneshyari.com</u>