The second mixed projection problem and the projection centroid conjectures

Mohammad N. Ivaki
Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstr. 8-10, 1040 Wien, Austria

A R T I C L E I N F O

Article history:

Received 25 October 2016
Accepted 3 February 2017
Available online 10 February 2017
Communicated by E. Milman

Keywords:

Mixed projection body
Projection centroid conjectures
Inverse function theorem

Abstract

We provide partial answers to the open problems 4.5, 4.6 of [3] and 12.9 of [12] regarding the classification of fixed points of the second mixed projection operator and iterates of the projection and centroid operators.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The setting of this paper is n-dimensional Euclidean space \mathbb{R}^{n}. A compact convex subset of \mathbb{R}^{n} with non-empty interior is called a convex body. The set of convex bodies in \mathbb{R}^{n} is denoted by K^{n}. Write K_{e}^{n} for the set of origin-symmetric convex bodies. Also, write B^{n} and S^{n-1} for the unit ball and the unit sphere of \mathbb{R}^{n}. Moreover, ω_{k} denotes the volume of B^{k}.

The support function of $K \in \mathrm{~K}^{n}, h_{K}: S^{n-1} \rightarrow \mathbb{R}$, is defined by

$$
h_{K}(u)=\max _{x \in K} x \cdot u .
$$

[^0]Assume $K \in \mathrm{~K}^{n}, n \geq 2$. The i th projection body $\Pi_{i} K$ of K is the origin-symmetric convex body whose support function, for $u \in S^{n-1}$, is given by

$$
h_{\Pi_{i} K}(u)=\frac{1}{2} \int_{S^{n-1}}|u \cdot x| d S_{i}(K, x),
$$

where $S_{i}(K, \cdot)$ is the mixed area measure of i copies of K and $n-1-i$ copies of B^{n}; see [3, Section A3]. Note that Π_{n-1} coincides with the usual projection operator Π. We refer the reader to [11], especially Proposition 2, regarding the importance of classification of solutions to $\Pi_{i}^{2} K=c K+\vec{v}$, where c is a positive constant and \vec{v} is a vector. Let us remark that $\Pi_{i} B^{n}=\omega_{n-1} B^{n}$ and $\Pi_{i}^{2} B^{n}=\omega_{n-1}^{n} B^{n}$. [3, Problems 4.6] and [12, Problems 12.7] ask which convex bodies K are such that $\Pi_{i}^{2} K$ is homothetic to K. The case $i=n-1$ has received partial answers; see [9,16,20]. Schneider [17] deals with the case $i=1$ and proves origin-centered balls are the only solutions to $\Pi_{1}^{2} K=c K$. Grinberg and Zhang [5] provide an alternative path to this result. Motivated by the work of Fish, Nazarov, Ryabogin and Zvavitch [2] where the idea of considering the iteration problems locally was first considered, here we prove local uniqueness theorems for fixed points of the second mixed projection operators for $1<i<n-1$:

Theorem 1.1. Suppose $n \geq 3$ and $1<i<n-1$. There exists $\varepsilon>0$ with the following property. If a convex body K satisfies $\Pi_{i}^{2} K=c K+\vec{v}$ for some $c>0$ and $\vec{v} \in \mathbb{R}^{n}$, and $\left\|h_{\lambda K+\vec{a}}-1\right\|_{C^{2}} \leq \varepsilon$ for some $\lambda>0$ and $\vec{a} \in \mathbb{R}^{n}$, then K is a ball.

A set K in \mathbb{R}^{n} is called star-shaped if it is non-empty and if $[0, x] \subset K$ for every $x \in K$. For a compact star-shaped set K, the radial function ρ_{K} is defined by

$$
\rho_{K}(x)=\max \{\lambda \geq 0 ; \lambda x \in K\}, \quad x \in \mathbb{R}^{n}-\{0\}
$$

A compact star-shaped set with a positive continuous radial function is called a star body.

The polar body, K^{*}, of a convex body K with the origin in its interior is the convex body defined by

$$
K^{*}=\left\{x \in \mathbb{R}^{n} ; x \cdot y \leq 1 \text { for all } y \in K\right\} .
$$

It follows from the definition that $\rho_{K^{*}}=\frac{1}{h_{K}}$ on S^{n-1}.
The centroid body of a star body K is an origin-symmetric convex body whose support function, for $u \in S^{n-1}$, is given by

$$
h_{\Gamma K}(u)=\int_{S^{n-1}}|u \cdot x| \rho_{K}^{n+1}(x) d x
$$

https://daneshyari.com/en/article/5772214

Download Persian Version:

https://daneshyari.com/article/5772214

Daneshyari.com

[^0]: E-mail address: mohammad.ivaki@tuwien.ac.at.

