

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

The second mixed projection problem and the projection centroid conjectures

Functional Analysi

癯

Mohammad N. Ivaki

Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstr. 8–10, 1040 Wien, Austria

ARTICLE INFO

Article history: Received 25 October 2016 Accepted 3 February 2017 Available online 10 February 2017 Communicated by E. Milman

Keywords: Mixed projection body Projection centroid conjectures Inverse function theorem

ABSTRACT

We provide partial answers to the open problems 4.5, 4.6 of [3] and 12.9 of [12] regarding the classification of fixed points of the second mixed projection operator and iterates of the projection and centroid operators.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The setting of this paper is *n*-dimensional Euclidean space \mathbb{R}^n . A compact convex subset of \mathbb{R}^n with non-empty interior is called a *convex body*. The set of convex bodies in \mathbb{R}^n is denoted by \mathbb{K}^n . Write \mathbb{K}^n_e for the set of origin-symmetric convex bodies. Also, write B^n and S^{n-1} for the unit ball and the unit sphere of \mathbb{R}^n . Moreover, ω_k denotes the volume of B^k .

The support function of $K \in \mathbf{K}^n$, $h_K : S^{n-1} \to \mathbb{R}$, is defined by

$$h_K(u) = \max_{x \in K} x \cdot u.$$

E-mail address: mohammad.ivaki@tuwien.ac.at.

http://dx.doi.org/10.1016/j.jfa.2017.02.005 0022-1236/© 2017 Elsevier Inc. All rights reserved.

Assume $K \in \mathbb{K}^n$, $n \geq 2$. The *i*th projection body $\prod_i K$ of K is the origin-symmetric convex body whose support function, for $u \in S^{n-1}$, is given by

$$h_{\Pi_i K}(u) = \frac{1}{2} \int_{S^{n-1}} |u \cdot x| dS_i(K, x),$$

where $S_i(K, \cdot)$ is the mixed area measure of *i* copies of *K* and n-1-i copies of B^n ; see [3, Section A3]. Note that Π_{n-1} coincides with the usual projection operator Π . We refer the reader to [11], especially Proposition 2, regarding the importance of classification of solutions to $\Pi_i^2 K = cK + \vec{v}$, where *c* is a positive constant and \vec{v} is a vector. Let us remark that $\Pi_i B^n = \omega_{n-1} B^n$ and $\Pi_i^2 B^n = \omega_{n-1}^n B^n$. [3, Problems 4.6] and [12, Problems 12.7] ask which convex bodies *K* are such that $\Pi_i^2 K$ is homothetic to *K*. The case i = n - 1has received partial answers; see [9,16,20]. Schneider [17] deals with the case i = 1 and proves origin-centered balls are the only solutions to $\Pi_1^2 K = cK$. Grinberg and Zhang [5] provide an alternative path to this result. Motivated by the work of Fish, Nazarov, Ryabogin and Zvavitch [2] where the idea of considering the iteration problems locally was first considered, here we prove local uniqueness theorems for fixed points of the second mixed projection operators for 1 < i < n - 1:

Theorem 1.1. Suppose $n \geq 3$ and 1 < i < n - 1. There exists $\varepsilon > 0$ with the following property. If a convex body K satisfies $\prod_i^2 K = cK + \vec{v}$ for some c > 0 and $\vec{v} \in \mathbb{R}^n$, and $\|h_{\lambda K + \vec{a}} - 1\|_{C^2} \leq \varepsilon$ for some $\lambda > 0$ and $\vec{a} \in \mathbb{R}^n$, then K is a ball.

A set K in \mathbb{R}^n is called star-shaped if it is non-empty and if $[0, x] \subset K$ for every $x \in K$. For a compact star-shaped set K, the radial function ρ_K is defined by

$$\rho_K(x) = \max\{\lambda \ge 0; \lambda x \in K\}, \quad x \in \mathbb{R}^n - \{0\}.$$

A compact star-shaped set with a positive continuous radial function is called a star body.

The polar body, K^* , of a convex body K with the origin in its interior is the convex body defined by

$$K^* = \{ x \in \mathbb{R}^n ; x \cdot y \le 1 \text{ for all } y \in K \}.$$

It follows from the definition that $\rho_{K^*} = \frac{1}{h_K}$ on S^{n-1} .

The centroid body of a star body K is an origin-symmetric convex body whose support function, for $u \in S^{n-1}$, is given by

$$h_{\Gamma K}(u) = \int_{S^{n-1}} |u \cdot x| \rho_K^{n+1}(x) dx.$$

Download English Version:

https://daneshyari.com/en/article/5772214

Download Persian Version:

https://daneshyari.com/article/5772214

Daneshyari.com