

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Normalizations of Eisenstein integrals for reductive symmetric spaces

Erik P. van den Ban^a, Job J. Kuit ^{b,*,1}

ARTICLE INFO

Article history: Received 27 November 2014 Accepted 5 January 2017 Available online 17 January 2017 Communicated by P. Delorme

Keywords: Symmetric spaces Eisenstein integrals Principal series Intertwining operators

ABSTRACT

We construct minimal Eisenstein integrals for a reductive symmetric space G/H as matrix coefficients of the minimal principal series of G. The Eisenstein integrals thus obtained include those from the σ -minimal principal series. In addition, we obtain related Eisenstein integrals, but with different normalizations. Specialized to the case of the group, this wider class includes Harish-Chandra's minimal Eisenstein integrals. © 2017 Elsevier Inc. All rights reserved.

Contents

0.	Introduction	2796
1.	Notation and preliminaries	2799
2.	Minimal parabolic subgroups	2801
3.	Induced representations and densities	2805
4.	Comparison of principal series representations	2809
5.	H-fixed distribution vectors, the q-extreme case	2816
6.	An important fibration	2820

^a Mathematical Institute, Utrecht University, PO Box 80 010, 3508 TA Utrecht, The Netherlands

^b Institute of Mathematics, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany

^{*} Corresponding author.

E-mail addresses: E.P.vandenBan@uu.nl (E.P. van den Ban), j.j.kuit@gmail.com (J.J. Kuit).

¹ Supported by the Danish National Research Foundation through the Centre for Symmetry and Deformation (DNRF92).

7.	H-fixed distribution vectors, the general case	824
8.	Eisenstein integrals	834
9.	The case of the group	848
Ackno	wledgments	856
Apper	dix A. Fubini's theorem for densities	856
Refere	nces	864

0. Introduction

Eisenstein integrals play a fundamental role in harmonic analysis on reductive symmetric spaces of the form X = G/H; here G is assumed to be a real reductive group of the Harish-Chandra class, and H an (essentially connected) open subgroup of the group G^{σ} of an involution σ of G. The notion of Eisenstein integral goes back to Harish-Chandra, who used it to describe the contribution of generalized principal series to the Plancherel decomposition of a real reductive group G. In this setting an Eisenstein integral is essentially a matrix coefficient of an induced representation of the form $\operatorname{Ind}_P^G(G)$, with G a proper parabolic subgroup of G and G a suitable representation of G.

For general symmetric spaces G/H, the notion of Eisenstein integral was introduced in [6] for minimal σ -parabolic subgroups of G, i.e., minimal parabolic subgroups of G with the property that $\sigma(P) = \bar{P}$. The notion was later generalized to arbitrary σ -parabolic subgroups in [14,15] and found application in the Plancherel theorem for G/H, see [16] and [12]. In this setting of reductive symmetric spaces, the Eisenstein integrals appear essentially as matrix coefficients of K-finite matrix coefficients with H-fixed distribution vectors.

A group 'G of the Harish-Chandra class may be viewed as a homogeneous space for the left times right action of $G = G \times G$ on 'G, and is thus realized as the symmetric space G/H with H the diagonal in G. The definition of Eisenstein integral for the symmetric space G/H yields a matrix coefficient on 'G which is closely related to Harish-Chandra's Eisenstein integral, but not equal to it. The two obtained types of Eisenstein integrals differ by a normalization which can be described in terms of intertwining operators, see [8] for details. In the present paper we develop a notion of minimal Eisenstein integrals for reductive symmetric spaces, which cover both the existing notion for symmetric spaces and Harish-Chandra's notion for the group.

An even stronger motivation for the present article lies in the application of its results to a theory of cusp forms for symmetric spaces, initiated by M. Flensted-Jensen. In [7] we use our results on Eisenstein integrals to generalize the results of [2] and [1] to reductive symmetric spaces of σ -split rank one (i.e., dim $\mathfrak{a}_q = 1$).

We will now explain our results in more detail. Let θ be a Cartan involution of G commuting with σ and let K be the associated maximal compact subgroup of G. Let

$$\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}=\mathfrak{h}\oplus\mathfrak{q}$$

Download English Version:

https://daneshyari.com/en/article/5772229

Download Persian Version:

https://daneshyari.com/article/5772229

<u>Daneshyari.com</u>