On Schatten-class perturbations of Toeplitz operators

Michael Didas, Jörg Eschmeier *, Dominik Schillo
Fachrichtung Mathematik, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany

A R T I C L E I N F O

Article history:

Received 26 June 2016
Accepted 12 November 2016
Available online 17 November 2016
Communicated by K. Seip

$M S C$:

47 A 13
47B20
47B35
47L80
47B47

Keywords:
Analytic Toeplitz operators
Essential commutant
Hardy spaces

Abstract

Let D denote the unit ball or the unit polydisc in \mathbb{C}^{n} with $n \geq 2$. For $1 \leq p \leq 2 n$ in the case of the ball and $1 \leq p<$ ∞ for the polydisc, we show that a bounded operator S on the Hardy space $H^{2}(D)$ commutes with all analytic Toeplitz operators modulo the Schatten class \mathcal{S}_{p} if and only if $S=$ $X+K$ with an analytic Toeplitz operator X and an operator $K \in \mathcal{S}_{p}$. This partially answers a question of Guo and Wang [14]. For $1 \leq p<\infty$ and a strictly pseudoconvex or bounded symmetric and circled domain $D \subset \mathbb{C}^{n}$, we show that a given operator S on $H^{2}(D)$ is a Schatten- p-class perturbation of a Toeplitz operator if and only if $T_{\theta}^{*} S T_{\theta}-S \in \mathcal{S}_{p}$ for every inner function θ on D.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and main results

Let $D \subset \mathbb{C}^{n}$ be either the unit ball \mathbb{B}_{n} or the unit polydisc \mathbb{D}^{n}. In [14] Guo and Wang asked for a characterization of those bounded operators S on the Hardy space $H^{2}(D)$ that commute with all analytic Toeplitz operators modulo the Schatten classes

[^0]$$
\mathcal{S}_{p}=\left\{X \in B\left(H^{2}(D)\right):\|X\|_{p}=\left(\operatorname{tr}|X|^{p}\right)^{1 / p}<\infty\right\}
$$

Note that there is a chain of inclusions

$$
\mathcal{S}_{0} \subset \mathcal{S}_{p} \subset \mathcal{S}_{q} \subset \mathcal{S}_{\infty} \quad(1 \leq p<q<\infty)
$$

where \mathcal{S}_{0} stands for the finite-rank and \mathcal{S}_{∞} for the compact operators on $H^{2}(D)$. Questions concerning the p-essential commutant

$$
\mathcal{T}_{a}^{\mathrm{ec}, p}=\left\{S \in B\left(H^{2}(D)\right):[S, X]=S X-X S \in \mathcal{S}_{p} \text { for every } X \in \mathcal{T}_{a}\right\}
$$

of the set of all analytic Toeplitz operators $\mathcal{T}_{a}=\left\{T_{f}: f \in H^{\infty}(D)\right\}$ date back at least to the work of Douglas and Sarason on Toeplitz operators on the unit disc. A complete characterization of the essential commutant $\mathcal{T}_{a}^{e c}=\mathcal{T}_{a}^{e c, \infty}$ of the analytic Toeplitz operators on the unit disc was given by Davidson [4] in 1977. A generalization of Davidson's result to the unit ball was obtained in 1997 by Ding and Sun [9] (see also Le [17] for related work). In a recent paper of Everard and the first two authors [8] Davidson's result is extended to the case of smoothly bounded strictly pseudoconvex domains $D \subset \mathbb{C}^{n}$. More precisely, it is shown that

$$
\mathcal{T}_{a}^{\mathrm{ec}}=\left\{T_{f}+K: K \text { compact, } f \in L^{\infty}(\sigma) \text { with } H_{f} \text { compact }\right\}
$$

where σ denotes the normalized surface measure on ∂D and H_{f} is the Hankel operator with symbol f. On the unit disc, a well known theorem of Hartman says that H_{f} is compact if and only if $f \in H^{\infty}+C$ and thus we recover the main result of [4].

At the other end of the chain, namely for $p=0$, Guo and Wang completely solved both the ball and the polydisc case extending corresponding one-dimensional results of Gu [13]. They proved in [14] that

$$
\mathcal{T}_{a}^{\mathrm{ec}, 0}=\mathcal{T}_{a}+\mathcal{S}_{0} \quad\left(\text { if } D=\mathbb{B}_{n} \text { or } D=\mathbb{D}^{n} \text { and } n \geq 2\right)
$$

while, for $n=1, \mathcal{T}_{a}$ has to be replaced by the set of all Toeplitz operators T_{f} where f is the sum of a rational function and a bounded analytic function.

One of the goals of the present paper is to fill in at least some of the gaps between $p=0$ and $p=\infty$. Using results on the compactness and the Schatten-class membership of Hankel operators on $D=\mathbb{D}^{n}$ and $D=\mathbb{B}_{n}$ due to Cotlar and Sadoski [2] and Fang and Xia [12], respectively, we are able to prove the following result:

1. Theorem. Let $n \geq 2$ be given. If either

$$
D=\mathbb{B}_{n} \text { and } 1 \leq p \leq 2 n \quad \text { or } \quad D=\mathbb{D}^{n} \text { and } 1 \leq p<\infty
$$

https://daneshyari.com/en/article/5772263

Download Persian Version:
https://daneshyari.com/article/5772263

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: didas@math.uni-sb.de (M. Didas), eschmei@math.uni-sb.de (J. Eschmeier), schillo@math.uni-sb.de (D. Schillo).

