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The existence of solutions to a class of quasilinear elliptic 
problems on noncompact Riemannian manifolds, with finite 
volume, is investigated. Boundary value problems, with homo-
geneous Neumann conditions, in possibly irregular Euclidean 
domains are included as a special instance. A nontrivial 
solution is shown to exist under an unconventional growth 
condition on the right-hand side, which depends on the 
geometry of the underlying manifold. The identification of the 
critical growth is a crucial step in our analysis, and entails the 
use of the isocapacitary function of the manifold. A condition 
involving its isoperimetric function is also provided.
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1. Introduction

The present paper is concerned with the existence of solutions to semilinear elliptic 
equations on an n-dimensional Riemannian manifold M , whose weak formulation reads∫

M

|∇u|p−2∇u · ∇v dHn =
∫
M

f(u) v dHn (1.1)

for every test function v in the Sobolev space W 1,p(M). Here, p ∈ (1, ∞), ∇ stands for 
the gradient operator on M , |∇u| denotes its length, determined by the scalar product 
“·” associated with the Riemannian metric on M , and Hn is the volume measure on 
M induced by the metric. The function f : R → R is continuous, and satisfies suit-
able growth conditions for the right-hand side of (1.1) to be well defined for every test 
function v.

Throughout, we assume that M is connected, without boundary, and

Hn(M) < ∞ (1.2)

Although compact manifolds are included as a special case, the main emphasis will be 
on the noncompact case. Its treatment calls for new inequalities of Sobolev type, whose 
form is patterned on the geometry of M .

Equation (1.1) encompasses problems of diverse nature, depending on analytic-
geometric properties of M . Their common feature is that of being the Euler equation of 
the functional defined as

J(u) = 1
p

∫
M

|∇u|p dHn −
∫
M

F (u)dHn (1.3)

for u ∈ W 1,p(M), where F : R → R is the primitive of f given by

F (t) =
t∫

0

f(r) dr for t ∈ R. (1.4)

Hence, the solutions to (1.1) are the critical points of the functional J . For instance, if 
the space of smooth compactly supported functions on M is dense in W 1,p(M) – this 
certainly holds when M is a complete Riemannian manifold – then (1.1) corresponds to 
the weak form of the equation

−div(|∇u|p−2∇u) = f(u) on M. (1.5)

In the case when M is an open subset Ω of a Riemannian manifold, and in particular 
of the Euclidean space Rn, equation (1.1) amounts to the definition of weak solution to 
the Neumann boundary value problem
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