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In this paper, we study the product problem of Toeplitz oper-
ators on the Bergman space of the unit disk. We characterize 
when the product of two Toeplitz operators TfTg is a finite 
rank perturbation of another Toeplitz operator Th, with f , g
bounded harmonic and h in C2 class with invariant Laplacian
in L1. As a consequence, we show that there is no nontrivial 
rank one perturbation. However, in the case rank m ≥ 2, we 
construct an example that shows there are bounded harmonic 
functions f , g and h such that TfTg −Th has rank exactly m.
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1. Introduction

Many algebraic properties of Toeplitz operators on analytic function spaces have been 
studied. We are concerned with the problem of when the product of two Toeplitz opera-
tors TfTg is a finite perturbation of another Toeplitz operator Th. In this paper, we take 
the Bergman space as the domain and study the question for f , g bounded harmonic 
and h in C2 class with the invariant Laplacian in L1.

1.1. Definitions

Let dA denote the Lebesgue area measure on the unit disk D in the complex plane, 
normalized so that the measure of the disk D is 1. The Bergman space L2

a is the Hilbert 
space consisting of analytic functions on D that are square integrable with respect to 
the measure dA. For ϕ ∈ L2(D, dA), the Toeplitz operator Tϕ with symbol ϕ is defined 
densely on L2

a by

Tϕf = P (ϕf),

where P is the orthogonal projection from L2(D, dA) to L2
a.

For general operator S on a Hilbert space, the rank(S) is defined as the dimension 
of closure of the range of S. S is called finite rank operator with rank r if it is bounded 
and rank(S) = r < ∞. On the Bergman space, the rank r operator has the expression

S =
r∑

i=1
xi ⊗ yi,

where {xi}ri=1, {yi}ri=1 are two sets of linearly independent functions in L2
a and we use 

the standard notation for rank-one operators in the Hilbert space: x ⊗ y: h → 〈h, y〉x.
A tool that arises in the study of the Bergman space is the Berezin transform. Given 

an (possibly unbounded) operator S on L2
a, with its domain containing all the normalized 

reproducing kernels kz(w) = (1−|z|2)2
(1−z̄w)2 , the Berezin transform of S is the function

B[S](z) = 〈Skz, kz〉, z ∈ D,

where 〈, 〉 is the inner product in L2
a. It was proved that the Berezin transform is injective 

[18], which means B[S](z) = B[T ](z) will imply S = T for two operators S, T on L2
a.

For an integrable function f on D, the Berezin transform of f is the function

B[f ](z) = 〈fkz, kz〉

For u ∈ L1(D), it was shown in [4,12] that B(u) = u if and only if u is harmonic. We 
shall denote the Laplacian by Δ = ∂2

∂z∂z̄ and the invariant Laplacian by Δ̃ = (1 −|z|2)2Δ.
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