Wigner's theorem on Grassmann spaces

György Pál Gehér
Department of Mathematics, University of Reading, Reading RG6 6AX, United Kingdom

A R T I C L E I N F O

Article history:

Received 21 February 2017
Accepted 11 June 2017
Available online 16 June 2017
Communicated by Stefaan Vaes

Keywords:

Transition probability
Isometries
Grassmann space
Rank-n projections

Abstract

Wigner's celebrated theorem, which is particularly important in the mathematical foundations of quantum mechanics, states that every bijective transformation on the set of all rank-one projections of a complex Hilbert space which preserves the transition probability is induced by a unitary or an antiunitary operator. This vital theorem has been generalised in various ways by several scientists. In 2001, Molnár provided a natural generalisation, namely, he provided a characterisation of (not necessarily bijective) maps which act on the Grassmann space of all rank-n projections and leave the system of Jordan principal angles invariant (see [17] and [20]). In this paper we give a very natural joint generalisation of Wigner's and Molnár's theorems, namely, we prove a characterisation of all (not necessarily bijective) transformations on the Grassmann space which fix the quantity $\operatorname{Tr} P Q$ (i.e. the sum of the squares of cosines of principal angles) for every pair of rank- n projections P and Q.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction and statement of the main result

Let H be a complex Hilbert space and I stand for the identity operator. If n is a positive integer, then we denote the set of all rank- n (self-adjoint) projections by $P_{n}(H)$.

[^0]This space can be naturally identified with the Grassmann space of all n-dimensional subspaces of H using the map $P \mapsto \operatorname{Im} P$. In case when $n=1$, we get the usual projective space that represents the set of all pure states of a quantum system. For $P, Q \in P_{n}(H)$ let us call the quantity $\operatorname{Tr} P Q$ the transition probability between the two projections. If $n=1$, then this is a commonly used notion in quantum mechanics, furthermore, $\operatorname{Tr} P Q=\cos ^{2} \vartheta$ where ϑ is the angle between $\operatorname{Im} P$ and $\operatorname{Im} Q$. Wigner's theorem characterises symmetry transformations of $P_{1}(H)$ that respect the transition probability, or equivalently, that leave the angle invariant. However, this theorem can be significantly improved, namely, we can drop the bijectivity assumption and have a similar conclusion.

Theorem 1 (E.P. Wigner, see [28], or [9,17,26]). Let $\phi: P_{1}(H) \rightarrow P_{1}(H)$ be a (not necessarily bijective) transformation which satisfies

$$
\operatorname{Tr} \phi(P) \phi(Q)=\operatorname{Tr} P Q \quad\left(P, Q \in P_{1}(H)\right)
$$

Then ϕ is induced by either a linear or a conjugate-linear isometry $V: H \rightarrow H$, i.e.

$$
\phi(P)=V P V^{*} \quad\left(P \in P_{1}(H)\right)
$$

The above result is commonly referred to as the optimal version of Wigner's theorem. Various generalisations of this essential result have been provided, we only mention a few of them $[2,4,5,10,12,16-18,20,22-25]$. This short note is particularly concerned with Molnár's generalisation which we explain now. Assume that $n>1$ and $P, Q \in P_{n}(H)$, then the principal angles between P and Q are the arcuscosines of the n largest singularvalues of $P Q$ ([1, Exercise VII.1.10], [15, Problem 559]). The system of all principal angles is denoted by $\measuredangle(P, Q):=\left(\vartheta_{1}, \ldots \vartheta_{n}\right)$ where $\frac{\pi}{2} \geq \vartheta_{1} \geq \vartheta_{2} \geq \cdots \geq \vartheta_{n} \geq 0$. The origin of the notion goes back to Jordan's work [14] and has serious applications, see e.g. [7,11,13,21,27]. Molnár proved the following.

Theorem 2 (L. Molnár, [17, 20]). Let $\operatorname{dim} H>n \geq 2$ and $\phi: P_{n}(H) \rightarrow P_{n}(H)$ be a (not necessarily bijective) transformation that satisfies

$$
\begin{equation*}
\measuredangle(\phi(P), \phi(Q))=\measuredangle(P, Q) \quad\left(P, Q \in P_{n}(H)\right) \tag{1}
\end{equation*}
$$

Then either ϕ is induced by a linear or a conjugate-linear isometry $V: H \rightarrow H$, i.e.

$$
\phi(P)=V P V^{*} \quad\left(P \in P_{n}(H)\right)
$$

or we have $\operatorname{dim} H=2 n$ and

$$
\phi(P)=I-V P V^{*} \quad\left(P \in P_{n}(H)\right)
$$

As it was revealed in a personal conversation, Molnár's original desire was to prove a more general result. Namely, note that by the two projections theorem ([3,8,10]) we

https://daneshyari.com/en/article/5772358

Download Persian Version:

https://daneshyari.com/article/5772358

Daneshyari.com

[^0]: E-mail addresses: gehergyuri@gmail.com, G.P.Geher@reading.ac.uk.

