

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Existence of Lipschitz continuous solutions to the Cauchy–Dirichlet problem for anisotropic parabolic equations

Alkis S. Tersenov^{a,c,*}, Aris S. Tersenov^{b,c}

^a University of Crete, Department of Mathematics, 71003 Heraklion, Crete, Greece

^b Sobolev Institute of Mathematics, 630090 Novosibirsk, Russia

 $^{\rm c}$ Novosibirsk State University, 630090 Novosibirsk, Russia

A R T I C L E I N F O

Article history: Received 30 October 2014 Accepted 18 February 2017 Available online 2 March 2017 Communicated by Cédric Villani

MSC: 35K20 35K65 35B45

Keywords: Singular parabolic equations Degenerate parabolic equations

ABSTRACT

The Cauchy–Dirichlet and the Cauchy problem for the degenerate and singular quasilinear anisotropic parabolic equations are considered. We show that the time derivative u_t of a solution u belongs to L_{∞} under a suitable assumption on the smoothness of the initial data. Moreover, if the domain satisfies some additional geometric restrictions, then the spatial derivatives u_{x_i} belong to L_{∞} as well. In the singular case we show that the second derivatives $u_{x_ix_j}$ of a solution of the Cauchy problem belong to L_2 .

© 2017 Elsevier Inc. All rights reserved.

1. Introduction and main results

Let Ω be a bounded domain in \mathbb{R}^n satisfying the exterior sphere condition and $\Omega_T = (0,T) \times \Omega$ with an arbitrary $T \in (0,\infty)$. We denote by $x = (x_1, \ldots, x_n)$ the points in

* Corresponding author.

E-mail addresses: tersenov@math.uoc.gr (A.S. Tersenov), atersenov@math.nsc.ru (A.S. Tersenov).

http://dx.doi.org/10.1016/j.jfa.2017.02.014 0022-1236/© 2017 Elsevier Inc. All rights reserved. Ω and by t the time variable that varies in the interval [0, T]. Consider the following quasilinear parabolic equation

$$u_t = \sum_{i=1}^n (|u_{x_i}|^{p_i} u_{x_i})_{x_i} \quad \text{in} \quad \Omega_T,$$
(1.1)

coupled with the homogeneous Dirichlet boundary condition

$$u = 0 \text{ on } [0, T] \times \partial \Omega$$
 (1.2)

and the initial condition

 $u(0,x) = u_0(x)$ in Ω , $u_0(x) \in C^2(\Omega)$ and $u_0(x) = 0$ on $\partial \Omega$. (1.3)

Here $p_i > -1$, i = 1, ..., n. Without loss of generality, we assume that the p_i are ordered:

$$-1 < p_1 \le p_2 \le \dots \le p_n < +\infty.$$

Let $-1 < p_i < 0$ for i = 1, ..., m and $p_i \ge 0$ for i = m + 1, ..., n where $0 \le m \le n$.

This class of equations has received considerable attention in the last years and not only, see, for example, [1-5,10-13,22,23] and the references therein. Concerning the different aspects of the stationary case, see, for example, [6,7,17,22,23]. From [13] it follows that if $u_0 \in L_{\infty}(\Omega)$, then there exists a unique weak solution of problem (1.1)-(1.3)which is defined as a function

$$u \in L_{\infty}(\Omega_T) \cap V(\Omega_T) \cap C([0,T]; L_s(\Omega)) \quad \forall s \in [1,\infty), \quad u_t \in V^*(\Omega_T),$$

satisfying the integral identity

$$\int_{\Omega_T} \left(u\phi_t - \sum_{i=1}^n |u_{x_i}|^{p_i} u_{x_i} \phi_{x_i} \right) dx dt = -\int_{\Omega} u_0 \phi(0, x) dx$$

for an arbitrary smooth function $\phi(t, x)$ which is equal to zero for $x \in \partial\Omega$ and for t = T. Here $V^*(\Omega_T)$ is the adjoint space to $V(\Omega_T) = \bigcap_{i=1}^n L_{p_i+2}(0, T; U_i(\Omega))$ where $U_i(\Omega)$ is the closure of $C^0_{\infty}(\Omega)$ with respect to the norm $\|u\|_{U_i} = \|u\|_{L_2} + \|u_{x_i}\|_{L_{p_i+2}}$ (for more details see [13]).

The main goal of the present paper is to show that under the following assumption on the initial data u_0 :

$$\sum_{i=1}^{n} \max_{\Omega} |(|u_{0x_i}|^{p_i} u_{0x_i})_{x_i}| < +\infty,$$
(1.4)

the derivative of a solution with respect to t is an L_{∞} function. The proof is based on the idea of introducing a new time variable inspired by the idea of introducing a new Download English Version:

https://daneshyari.com/en/article/5772362

Download Persian Version:

https://daneshyari.com/article/5772362

Daneshyari.com