

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Deterministic homogenization for fast–slow systems with chaotic noise

David Kelly^{a,*}, Ian Melbourne^b

^a Courant Institute, New York University, NY, USA
^b Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

ARTICLE INFO

Article history: Received 2 April 2015 Accepted 24 January 2017 Available online 23 February 2017 Communicated by F. Otto

Keywords: SDE Rough path theory Smooth ergodic theory Multiscale

ABSTRACT

Consider a fast-slow system of ordinary differential equations of the form $\dot{x} = a(x, y) + \varepsilon^{-1}b(x, y)$, $\dot{y} = \varepsilon^{-2}g(y)$, where it is assumed that *b* averages to zero under the fast flow generated by *g*. We give conditions under which solutions *x* to the slow equations converge weakly to an Itô diffusion *X* as $\varepsilon \to 0$. The drift and diffusion coefficients of the limiting stochastic differential equation satisfied by *X* are given explicitly.

Our theory applies when the fast flow is Anosov or Axiom A, as well as to a large class of nonuniformly hyperbolic fast flows (including the one defined by the well-known Lorenz equations), and our main results do not require any mixing assumptions on the fast flow.

© 2017 Published by Elsevier Inc.

1. Introduction

Let $\{\phi_t\}_{t\geq 0}$ be a smooth, deterministic flow on a finite dimensional manifold M, with invariant ergodic probability measure μ . One should think of ϕ_t as the flow generated by an ordinary differential equation (ODE) with a chaotic invariant set $\Omega \subset M$ and μ supported on Ω . Define $y(t) = \phi_t y_0$ where the initial condition y_0 is chosen at random

* Corresponding author.

E-mail addresses: dtkelly@cims.nyu.edu (D. Kelly), I.Melbourne@warwick.ac.uk (I. Melbourne).

according to μ . Hence $y(t) = y(t, y_0)$ is a random variable on the probability space (Ω, μ) ; from here on we omit y_0 from the notation, as is conventional with random variables. Let $a, b : \mathbb{R}^d \times M \to \mathbb{R}^d$ be vector fields with suitable regularity assumptions. We are interested in the asymptotic behavior of the ODE

$$\frac{dx^{(\varepsilon)}}{dt} = \varepsilon^2 a(x^{(\varepsilon)}, y) + \varepsilon b(x^{(\varepsilon)}, y) \quad , \quad x^{(\varepsilon)}(0) = \xi$$

as $\varepsilon \to 0$ and $t \to \infty$, with $\varepsilon^2 t$ remaining fixed. The initial condition $\xi \in \mathbb{R}^d$ is assumed deterministic. Due to the dependence on y_0 , we interpret $x^{(\varepsilon)}$ as a random variable on Ω taking values in the space of continuous functions $C([0, T], \mathbb{R}^d)$ for some finite T > 0.

To make the statement of convergence precise, we define $y_{\varepsilon}(t) = y(\varepsilon^{-2}t)$ and x_{ε} as the solution to the ODE

$$\frac{dx_{\varepsilon}}{dt} = a(x_{\varepsilon}, y_{\varepsilon}) + \frac{1}{\varepsilon}b(x_{\varepsilon}, y_{\varepsilon}) \quad , \quad x_{\varepsilon}(0) = \xi \; . \tag{1.1}$$

In particular, we arrive at this equation under the rescaling $t \mapsto t/\varepsilon^2$ and setting $x_{\varepsilon}(t) = x^{(\varepsilon)}(t/\varepsilon^2)$. Our aim is to identify the limiting behavior of the random variable x_{ε} on the space of continuous functions as $\varepsilon \to 0$.

Under certain assumptions on the fast flow ϕ_t , it is known that $x_{\varepsilon} \to_w X$ where X is an Itô diffusion, and where \to_w denotes weak convergence of random variables on the space $C([0,T], \mathbb{R}^d)$. At an intuitive level, the *a* term *averages* to an ergodic mean, via a law of large numbers type effect and the *b* term *homogenizes* to a stochastic integral, via a central limit theorem type effect. This type of problem is often referred to as *deterministic* homogenization, since the randomness is not coming from a typical stochastic process, but rather from an ergodic dynamical system with random initial condition.

Assuming rather strong mixing conditions on ϕ_t , one can show that x_{ε} converges weakly to the solution X of an Itô SDE

$$dX = \tilde{a}(X)dt + \sigma(X)dB \quad , \quad X(0) = \xi \tag{1.2}$$

where B is an \mathbb{R}^d valued standard Brownian motion, the drift $\tilde{a} : \mathbb{R}^d \to \mathbb{R}^d$ is given by

$$\tilde{a}^{i}(x) = \int_{\Omega} a^{i}(x,y)d\mu(y) + \int_{0}^{\infty} \int_{\Omega} b(x,y) \cdot \nabla b^{i}(x,\phi_{t}y)d\mu(y)dt$$
(1.3)

for all $i = 1, \ldots, d$ and the diffusion coefficient $\sigma : \mathbb{R}^d \to \mathbb{R}^{d \times d}$ is given by

$$\sigma(x)\sigma^{T}(x) = \int_{0}^{\infty} \int_{\Omega} \left(b(x,y) \otimes b(x,\phi_{t}y) + (b(x,\phi_{t}y) \otimes b(x,y)) d\mu(y) dt \right) .$$
(1.4)

The mixing assumptions required on ϕ_t are typically very strong. For instance, the above result follows from [22] under the assumption of phi mixing with rapidly decaying mixing

Download English Version:

https://daneshyari.com/en/article/5772366

Download Persian Version:

https://daneshyari.com/article/5772366

Daneshyari.com