

Contents lists available at ScienceDirect

Journal of Functional Analysis

A direct method of moving spheres on fractional order equations

Wenxiong Chen a,b,*, Yan Li^b, Ruobing Zhang ^c

- $^{\mathrm{a}}$ Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, China
- ^b Department of Mathematics, Yeshiva University, New York, NY, USA
- ^c Department of Mathematics, Princeton University, Princeton, NJ, USA

ARTICLE INFO

Article history: Received 20 October 2015 Accepted 28 February 2017 Available online 6 March 2017 Communicated by B. Chow

Keywords: Fractional Laplacians Direct method of moving spheres Radial symmetry Non-existence of solutions

ABSTRACT

In this paper, we introduce a direct method of moving spheres for the fractional Laplacian $(-\triangle)^{\alpha/2}$ with $0 < \alpha < 2$, in which a key ingredient is the narrow region maximum principle. As immediate applications, we classify non-negative solutions for semilinear equations involving the fractional Laplacian in \mathbb{R}^n ; we prove a non-existence result for the prescribing Q_α curvature equation on \mathbb{S}^n ; then by combining the direct method of moving planes and moving spheres, we establish a Liouville type theorem on a half Euclidean space. We expect to see more applications of this method to many other nonlinear equations involving non-local operators.

 $\ensuremath{@}$ 2017 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	4132
2.	A narrow region maximum principle and the method of moving spheres	4135
3.	Classification of solutions to semilinear fractional equations in \mathbb{R}^n	4139
4.	A non-existence result for the prescribing Q_{α} curvature equation on \mathbb{S}^n	4145

^{*} Corresponding author.

 $[\]label{lem:email$

	4.1.	Fractional GJMS operators and prescribing fractional curvature problem 41	145
	4.2.	A non-existence theorem	148
5.	A Lio	puville type theorem on a half space	151
Ackno	owledgi	ment	154
Appe	ndix A.		154
Refere	ences .		156

1. Introduction

Recently, the fractional Laplacian has seen more and more applications in Physics, Chemistry, Biology, Probability, and Finance; and it has drawn more and more attention from the mathematical community. This fractional Laplacian is a pseudo-differential operator defined by

$$(-\triangle)^{\alpha/2}u(x) \equiv C_{n,\alpha} \text{ P. V.} \int_{\mathbb{R}^n} \frac{u(x) - u(y)}{|x - y|^{n + \alpha}} dy$$

$$\equiv C_{n,\alpha} \lim_{\epsilon \to 0} \int_{\mathbb{R}^n \setminus B_{\epsilon}(x)} \frac{u(x) - u(y)}{|x - y|^{n + \alpha}} dy, \tag{1.1}$$

for any real number $0 < \alpha < 2$.

Let

$$L_{\alpha} \equiv \left\{ u : \mathbb{R}^n \to \mathbb{R}^1 \middle| \int_{\mathbb{R}^n} \frac{|u(x)|}{1 + |x|^{n+\alpha}} dx < \infty \right\}.$$
 (1.2)

Then the operator $(-\triangle)^{\alpha/2}$ is well defined on the functions u in $L_{\alpha} \cap C_{loc}^{1,1}$. One can see from the definition (1.1) that it is nonlocal: Even u is identically zero in a neighborhood of a point x, $(-\triangle)^{\alpha/2}u(x)$ still may not vanish. Hence, traditional methods on local differential operators, such as on Laplacian $-\triangle$ may not work on this nonlocal operator. To circumvent this difficulty, Caffarelli and Silvestre [2] introduced the extension method that reduced this nonlocal problem into a local one in higher dimensions. For a function $u: \mathbb{R}^n \to \mathbb{R}$, let $U: \mathbb{R}^n \times [0, \infty) \to \mathbb{R}$ be its extension satisfying

$$\begin{cases} div(y^{1-\alpha}\nabla U) = 0, & (x,y) \in \mathbb{R}^n \times [0,\infty), \\ U(x,0) = u(x), & x \in \mathbb{R}^n. \end{cases}$$

Then

$$(-\triangle)^{\alpha/2}u(x) = -C_{n,\alpha} \lim_{y \to 0^+} y^{1-\alpha} \frac{\partial U}{\partial y}, \quad x \in \mathbb{R}^n.$$

Download English Version:

https://daneshyari.com/en/article/5772369

Download Persian Version:

https://daneshyari.com/article/5772369

<u>Daneshyari.com</u>