

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

On finite free Fisher information for eigenvectors of a modular operator $\stackrel{\bigstar}{\approx}$

Functional Analysi

癯

Brent Nelson

Department of Mathematics, University of California, Berkeley, United States

A R T I C L E I N F O

Article history: Received 27 April 2016 Accepted 13 June 2017 Available online 23 June 2017 Communicated by Stefaan Vaes

Keywords: Free probability Non-tracial Factor Full

ABSTRACT

Suppose M is a von Neumann algebra equipped with a faithful normal state φ and generated by a finite set $G = G^*$, $|G| \geq 2$. We show that if G consists of eigenvectors of the modular operator Δ_{φ} with finite free Fisher information, then the centralizer M^{φ} is a II₁ factor and M is either a type III₁ factor or a type III_{λ} factor, $0 < \lambda \leq 1$, depending on the eigenvalues of G. Furthermore, $(M^{\varphi})' \cap M = \mathbb{C}, M^{\varphi}$ does not have property Γ , and M is full provided it is type III_{λ}, $0 < \lambda < 1$.

@ 2017 Elsevier Inc. All rights reserved.

0. Introduction

Given random variables x_1, \ldots, x_n in a non-commutative probability space (M, φ) , it is natural to ask what information about the distribution of a polynomial $p \in \mathbb{C}[x_1, \ldots, x_n]$ can be gleaned from the distributions of x_1, \ldots, x_n . If $p = x_1 + x_2$ or $p = x_1 x_2$ with x_1 freely independent from x_2 , the theory of free additive and multi-

^{*} Research supported by NSF grants DMS-1502822 and DMS-0838680. *E-mail address:* brent@math.berkeley.edu.

plicative convolutions tells us everything about the distribution of p, but (until recently) without the strict *regularity condition* of free independence little could be deduced about the distribution of a general polynomial.

Shlyakhtenko and Skoufranis studied the distributions of matrices of polynomials in freely independent random variables x_1, \ldots, x_n and their adjoints, and in particular showed that if x_1, \ldots, x_n were semicircular random variables, then any self-adjoint polynomial has diffuse spectrum [21]. Mai, Speicher, and Weber later improved upon this result by showing that if x_1, \ldots, x_n are self-adjoint random variables, not necessarily freely independent or having semicircular distributions but instead having finite free Fisher information, then x_1, \ldots, x_n are algebraically free, any non-constant self-adjoint polynomial $p \in \mathbb{C}[x_1, \ldots, x_n]$ has diffuse spectrum, and $W^*(x_1, \ldots, x_n)$ contains no zero divisors for $\mathbb{C}[x_1, \ldots, x_n]$ [15]. Charlesworth and Shlyakhtenko further improved on this result by weakening the assumption of finite free Fisher information to having full free entropy dimension, and showed that under stronger assumptions on x_1, \ldots, x_n one can assert that the spectral measure of $p \in \mathbb{C}[x_1, \ldots, x_n]$ is non-singular [3]. These techniques have since been applied by Hartglass to show that certain elements in C^* -algebras associated to weighted graphs have diffuse spectrum [14]. In this paper, these techniques are brought to bear on non-tracial von Neumann algebras.

We consider a von Neumann algebra M with a faithful normal state φ , and a finite generating set G. We will further assume that G has finite free Fisher information with respect to the state φ , and that each $y \in G$ is an "eigenoperator"; that is, scaled by the modular automorphism group: $\sigma_t^{\varphi}(y) = \lambda_y^{it} y$ for some $\lambda_y > 0$. Under these assumptions, we obtain a criterion for when polynomials $\mathbb{C}[G]$ in the centralizer M^{φ} have diffuse spectrum (*cf.* Corollary 5.10). Our context is inspired by Shlyakhtenko's free Araki–Woods factors, which are non-tracial von Neumann algebras generated by *generalized circular elements* (operators scaled by the action of the modular automorphism group, *cf.* [18, Section 4]).

Regularity conditions on x_1, \ldots, x_n can also have consequences on the von Neumann algebra generated by these operators. Indeed, Dabrowski [12] showed that if x_1, \ldots, x_n in a tracial non-commutative probability space have finite free Fisher information, then these operators generate a factor without property Γ . The non-tracial analogue of this result, which considers the centralizer M^{φ} as well as M, is the content of the two main results of this paper. The first is concerned with factoriality:

Theorem A. Let M be a von Neumann algebra with a faithful normal state φ . Suppose M is generated by a finite set $G = G^*$, $|G| \ge 2$, of eigenoperators of σ^{φ} with finite free Fisher information. Then $(M^{\varphi})' \cap M = \mathbb{C}$. In particular, M^{φ} is a II₁ factor and if $H < \mathbb{R}^+_+$ is the closed subgroup generated by the eigenvalues of G then

$$M \text{ is a factor of type} \begin{cases} III_1 & \text{if } H = \mathbb{R}_+^{\times} \\ III_{\lambda} & \text{if } H = \lambda^{\mathbb{Z}}, \ 0 < \lambda < 1 \\ II_1 & \text{if } H = \{1\}. \end{cases}$$

Download English Version:

https://daneshyari.com/en/article/5772393

Download Persian Version:

https://daneshyari.com/article/5772393

Daneshyari.com