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1. Introduction

Let d > 1 be an integer, and let a1, 2s,...,24 be the coordinates of R?. Given a
separable Hilbert space H, we denote the algebra of all bounded linear operators on H
by Lo (H). The singular value function of a bounded operator A € L (H) is defined
by

wu(t, A) = inf{||A(1 — P)|| : P is a finite rank projection, Tr(P) < t}, ¢t > 0.

The sequence {u(n, A)}2, is called the sequence of singular values of the operator A.
When A is a compact operator then p(n, A), n > 0, is the (n + 1)-th eigenvalue of the
absolute value |A| when the sequence of eigenvalues is arranged in decreasing order. We
define the Schatten—Von Neumann space L£,(H), p € (0, 00], as the subspace of operators
in Lo (H) with a sequence of singular values in ¢P. Similarly the Schatten—Lorentz space
L, 4(H) is defined as the operators with singular values in ¢7-7, for p,q € (0, c0]. When
p # oo an operator A € L, ,(H) is compact. See [8, Chapter 4] for details on these
spaces. We will suppress the dependence on H and write £, ; when the Hilbert space is
clear from context.

Given A € L, , with a sequence of singular values {p(n, A)}°2 ), the quasinorm || A, 4
is defined to be the 7?7 norm of {u(n, A)}22,.

For j =1,...,d, we define D; to be the derivative in the direction z;,
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When f € L®(R?) is not a smooth function then D; f denotes the distributional deriva-
tive of f. We also consider D; as a self-adjoint operator on L?(R?) with its standard
domain of square integrable functions with a square integrable weak derivative in the
direction x;. This is equivalent to the closure of the symmetric operator D; restricted to
Schwartz functions. We use the notation Vf = i(Dyf, Daf,..., Daf) for an essentially
bounded function f € L>®(R%). For a square integrable function f with a square inte-
grable derivative in each direction we consider V as an unbounded operator from L?(R?)
to the Bochner space L%(R9, CY).

Let N = 2l4/2], We use d-dimensional Euclidean gamma matrices, which are N x N
self-adjoint complex matrices 71, ..., 74 satisfying the anticommutation relation,

ViV + vy = 205k, 1 <4,k < d,

where ¢ is the Kronecker delta. The precise choice of matrices satisfying this relation is
unimportant so we assume that a choice is fixed for the rest of this paper.
Using this choice of gamma matrices, we can define the d-dimensional Dirac operator,
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