

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Ando dilations, von Neumann inequality, and distinguished varieties

癯

B. Krishna Das^a, Jaydeb Sarkar^{b,*}

 ^a Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
^b Indian Statistical Institute, Statistics and Mathematics Unit, 8th Mile, Mysore Road, Bangalore, 560059, India

ARTICLE INFO

Article history: Received 2 May 2016 Accepted 13 August 2016 Available online 18 August 2016 Communicated by K. Seip

MSC: 47A13 47A20 47A56 47B38 14M99 46E20 30H10

Keywords: von Neumann inequality Commuting isometries Isometric dilations Inner multipliers

ABSTRACT

Let \mathbb{D} denote the unit disc in the complex plane \mathbb{C} and let $\mathbb{D}^2 = \mathbb{D} \times \mathbb{D}$ be the unit bidisc in \mathbb{C}^2 . Let (T_1, T_2) be a pair of commuting contractions on a Hilbert space \mathcal{H} . Let dim ran $(I_{\mathcal{H}} - T_j T_j^*) < \infty$, j = 1, 2, and let T_1 be a pure contraction. Then there exists a variety $V \subseteq \overline{\mathbb{D}}^2$ such that for any polynomial $p \in \mathbb{C}[z_1, z_2]$, the inequality

 $||p(T_1, T_2)||_{\mathcal{B}(\mathcal{H})} \le ||p||_V$

holds. If, in addition, T_2 is pure, then

$$V = \{(z_1, z_2) \in \mathbb{D}^2 : \det(\Psi(z_1) - z_2 I_{\mathbb{C}^n}) = 0\}$$

is a distinguished variety, where Ψ is a matrix-valued analytic function on \mathbb{D} that is unitary-valued on $\partial \mathbb{D}$. Our results comprise a new proof, as well as a generalization, of Agler and McCarthy's sharper von Neumann inequality for pairs of commuting and strictly contractive matrices.

@ 2016 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: dasb@math.iitb.ac.in, bata436@gmail.com (B.K. Das), jay@isibang.ac.in, jaydeb@gmail.com (J. Sarkar).

 $\label{eq:http://dx.doi.org/10.1016/j.jfa.2016.08.008} 0022\text{-}1236/ \ensuremath{\odot}\ 2016$ Elsevier Inc. All rights reserved.

Notation

\mathbb{D}	Open unit disc in the complex plane \mathbb{C} .
\mathbb{D}^2	Open unit bidisc in \mathbb{C}^2 .
\mathcal{H}, \mathcal{E}	Hilbert spaces.
$\mathcal{B}(\mathcal{H})$	The space of all bounded linear operators on \mathcal{H} .
$H^2_{\mathcal{E}}(\mathbb{D})$	\mathcal{E} -valued Hardy space on \mathbb{D} .
M_z	Multiplication operator by the coordinate function z .
$H^{\infty}_{\mathcal{B}(\mathcal{E})}(\mathbb{D})$	Set of $\mathcal{B}(\mathcal{E})\text{-valued}$ bounded analytic functions on $\mathbb{D}.$

All Hilbert spaces are assumed to be over the complex numbers. For a closed subspace S of a Hilbert space \mathcal{H} , we denote by P_S the orthogonal projection of \mathcal{H} onto S.

1. Introduction

The famous von Neumann inequality [12] states that: if T is a linear operator on a Hilbert space \mathcal{H} of norm one or less (that is, T is a contraction), then for any polynomial $p \in \mathbb{C}[z]$, the inequality

$$\|p(T)\|_{\mathcal{B}(\mathcal{H})} \le \|p\|_{\mathbb{D}}$$

holds. Here $||p||_{\mathbb{D}}$ denotes the supremum of |p(z)| over the unit disc \mathbb{D} .

In 1953, Sz.-Nagy [9] proved that a linear operator on a Hilbert space is a contraction if and only if the operator has a unitary dilation. This immediately gives a simple and elegant proof of the von Neumann inequality.

In 1963, Ando [3] proved the following generalization of Sz.-Nagy's dilation theorem: Any pair of commuting contractions has a commuting unitary dilation. As an immediate consequence, we obtain the following two variables von Neumann inequality:

Theorem (Ando). Let (T_1, T_2) be a pair of commuting contractions on a Hilbert space \mathcal{H} . Then for any polynomial $p \in \mathbb{C}[z_1, z_2]$, the inequality

$$\|p(T_1, T_2)\|_{\mathcal{B}(\mathcal{H})} \le \|p\|_{\mathbb{D}^2}$$

holds.

However, for three or more commuting contractions the above von Neumann type inequality is not true in general (see [4,11]). An excellent source of further information on von Neumann inequality is the monograph by Pisier [7].

In a recent seminal paper, Agler and McCarthy [2] proved a sharper version of von Neumann inequality for pairs of commuting and strictly contractive matrices (see Theorem 3.1 in [2]): Two variables von Neumann inequality can be improved in the case of Download English Version:

https://daneshyari.com/en/article/5772413

Download Persian Version:

https://daneshyari.com/article/5772413

Daneshyari.com