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We prove pointwise variational Lp bounds for a bilinear 
Fourier integral operator in a large but not necessarily sharp 
range of exponents. This result is a joint strengthening of 
the corresponding bounds for the classical Carleson operator, 
the bilinear Hilbert transform, the variation norm Carleson 
operator, and the bi-Carleson operator. Terry Lyon’s rough 
path theory allows for extension of our result to multilinear 
estimates. We consider our result a proof of concept for a 
wider array of similar estimates with possible applications to 
ordinary differential equations.
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1. Introduction

Consider the bilinear iterated Fourier inversion integral

B(f1, f2)(x) :=
∫

ξ1<ξ2

f̂1(ξ1)f̂2(ξ2)eix(ξ1+ξ2)dξ1dξ2 . (1)

It is a close relative of the bilinear Hilbert transform, and as such satisfies Lp bounds as 
in [11–14].

Given any r ∈ (0, ∞), let Tr denote the following stronger operator

sup
K,N0<···<NK

( K∑
j=1

∣∣∣ ∫
Nj−1<ξ1<ξ2<Nj

f̂1(ξ1)f̂2(ξ2)eix(ξ1+ξ2)dξ1dξ2

∣∣∣r/2)2/r
. (2)

Thus Tr is a variation sum over truncations of B, in particular it dominates both B and 
the bi-Carleson operator considered in [24], which essentially is the limit case r → ∞
of Tr.

The main result of our paper is the following theorem:

Theorem 1.1. Assume that r > 2. Then Tr is bounded from Lp1 × Lp2 to Lp3 provided 
that 1/p3 = 1/p1 + 1/p2 and

max(1, 2r
3r − 4) < p1, p2 ≤ ∞ , max(2

3 ,
r′

2 ) < p3 < ∞ . (3)

Besides strengthening [11,14,24], Theorem 1.1 also implies a range of the Lp estimates 
for the variation norm Carleson theorem in [26]. Namely, the variation norm Carleson 
estimate can be obtained by a variant of (2) without the constraint ξ1 < ξ2, which in 
turn can be estimated by the sum of (2) and a symmetric version of (2).

The theory of ordinary differential equations G′ = WG with rough driving signals W
initiated by T. Lyons [17] and developed by many, for example [18], discusses similar 
expressions as (2) and also higher multilinear analogues of (2). Under some mild regular-
ity assumptions, the theory allows for bootstrapping of estimates for expressions similar 
to (2) with r ≤ 3 to higher multilinear estimates, and these estimates are then used to 
control the iterated integrals appearing in the multilinear expansion of the solution of the 
equation, and consequently one obtains estimates for the solution curve {G(x), x ∈ R}. 
In particular, T. Lyons’ rough path theory allows for bootstrapping of our main theorem 
in a certain range of exponents to multi(sub)linear estimates:

Corollary 1.2. Let k ≥ 3. For any r > 0 let Tk,r denote

sup
K,N0<···<NK

( K∑
j=1

∣∣∣ ∫
Nj−1<ξ1<···<ξk<Nj

k∏
m=1

f̂m(ξm)eixξmdξm

∣∣∣r/k)k/r

. (4)
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