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We establish the existence of bubbling solutions for the 
following skew-symmetric Chern–Simons system
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over a parallelogram Ω with doubly periodic boundary 
condition, where ε > 0 is a coupling parameter, and δp
denotes the Dirac measure concentrated at p. We obtain 
that if (N1 − 1)(N2 − 1) > 1, there exists an ε0 > 0 such 
that, for any ε ∈ (0, ε0), the above system admits a solution 
(u1,ε, u2,ε) satisfying u1,ε and u2,ε blow up simultaneously at 
the point p∗, and
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as ε → 0, where the location of the point p∗ defined by (1.12)
satisfies the condition (1.13).

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

There are various Chern–Simons theories are developed to explain certain phe-
nomenons in condensed matter physics and particles physics over the past few decades. 
For example, in condensed matter physics, Chern–Simons terms appear in various 
anyon models in understanding high temperature superconductivity and fractal quantum 
Hall effect; in particle physics, Chern–Simons terms allow electrically and magnetically 
charged vortices. We refer [10] for the survey on the self-dual Chern–Simons theories.

In the works of Hong, Kim and Pac [16], and Jackiw and Weinberg [17], they con-
sidered a model with one Chern–Simons gauge field and constructed selfdual Abelian 
Chern–Simons–Higgs vortices to describe anyonic solitons in 2 + 1 dimensions. After 
[16,17] appeared, Chern–Simons theory with even number gauge fields are suggested in 
[37,11], in which, the parity invariance can be restored after choosing appropriate cou-
pling constant. This phenomena was observed in the experiments with high temperature 
superconductors [30].

In this paper, we consider the Chern–Simons model of two Higgs fields, where each of 
them coupled to one of two Chern–Simons fields. As in [19,9], let (A(i)

μ ) (μ = 0, 1, 2, i =
1, 2) be two Abelian gauge fields and φi (i = 1, 2) be two Higgs scalar fields, where the 
electromagnetic fields and covariant derivatives are defined by

F (i)
μν = ∂μA

(i)
ν − ∂νA

(i)
μ , Dμφi = ∂μφi − iA(i)

μ φi, μ = 0, 1, 2, i = 1, 2. (1.1)

The Lagrangian of this model is defined by

L = −ε

2ε
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(
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)
+

2∑
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DμφiDμφi − V (φ1, φ2), (1.2)

where ε > 0 is a coupling parameter, and the Higgs potential V (φ1, φ2) is taken as

V (φ1, φ2) = 1
4ε2

(
|φ2|2

[
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]2 + |φ1|2
[
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]2)
. (1.3)

After a BPS reduction [2,29], the energy minimizer is shown to satisfy the following 
self-dual equation:
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