

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Lower estimates of heat kernels for non-local Dirichlet forms on metric measure spaces

Alexander Grigor'yan a,b, Eryan Hub, Jiaxin Huc,*

- ^a School of Mathematical Sciences and LPMC, Nankai University, 300071 Tianjin, China
- $^{\mathrm{b}}$ Fakultät für Mathematik, Universität Bielefeld, 33501 Bielefeld, Germany
- ^c Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

ARTICLE INFO

Article history:
Received 11 April 2016
Accepted 4 January 2017
Available online 9 January 2017
Communicated by L. Saloff-Coste

MSC: primary 35K08 secondary 28A80, 60J35

Keywords: Non-local Dirichlet form Heat kernel Lower estimate

ABSTRACT

We are concerned with heat kernel estimates for a non-local Dirichlet form on an Ahlfors regular metric measure space. We use an analytic approach to obtain the full lower stable-like estimate of the heat kernel from the near diagonal lower estimate. Combining with other known results, we obtain certain equivalent conditions for two-sided stable-like estimates of the heat kernel. The results can be simplified in certain cases, for example, when the Dirichlet form admits an effective resistance.

© 2017 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	3312
2.	Preliminaries and main results	3314

 $^{^{\}pm}$ AG was supported by SFB 701 of the German Research Council, by the Tsinghua Global Scholars Fellowship Program, and by a Visiting Scholarship of Chinese University of Hong Kong. EH was supported by SFB 701. JH was supported by NSFC No. 11371217, SRFDP No. 20130002110003, SFB 701.

^{*} Corresponding author.

E-mail addresses: grigor@math.uni-bielefeld.de (A. Grigor'yan), eryanhu@gmail.com (E. Hu), hujiaxin@mail.tsinghua.edu.cn (J. Hu).

3.	Comparison inequalities	18
4.	Heat kernel estimates	23
	4.1. Three lemmas	23
	4.2. Condition (S) and conservativeness	26
	4.3. Lower bounds of the heat kernel	30
	4.4. Proof of Theorem 2.9	33
	4.5. Condition (<i>LLE</i>)	36
5.	Spaces with positive effective resistance	38
6.	Appendix	12
Refere	ences	45

1. Introduction

In recent years there has been a growing interest in heat kernel estimates for non-local Dirichlet forms in various settings, see, for example [4,7,9–13,23,27] and the references therein. Let (M, d, μ) be a metric measure space and $(\mathcal{E}, \mathcal{F})$ be a regular Dirichlet form in $L^2(M, \mu)$. In many cases of interest, if $(\mathcal{E}, \mathcal{F})$ is of jump type, the heat kernel $p_t(x, y)$ of the associated heat semigroup admits the following two-sided estimate:

$$p_t(x,y) \approx c \min\left(t^{-\alpha/\beta}, \frac{t}{d(x,y)^{\alpha+\beta}}\right),$$
 (1.1)

where α is the Hausdorff dimension of the underlying metric space, β is a positive parameter called the *index*, and the symbol \approx means that both \leq and \geq hold but with different values of a positive constant c. For instance, the heat kernel of the fractional Laplacian $(-\Delta)^{\beta/2}$ on \mathbb{R}^n for any $\beta \in (0,2)$ admits the estimate (1.1) with $\alpha = n$. Note that $(-\Delta)^{\beta/2}$ is the generator of a symmetric stable process of index β . Hence, we refer to (1.1) as a *stable-like* estimate.

An important problem in this area is to provide equivalent conditions for the stable-like estimate (1.1) in reasonable terms, in particular, in terms of the jump kernel of the Dirichlet form. In the case $\beta < 2$ this problem was solved by Chen and Kumagai in [12,13]¹ by showing that, under the standing assumption of α -regularity of (M,d,μ) , the heat kernel estimate (1.1) is equivalent to the following estimate of the jump kernel of the Dirichlet form: $J(x,y) \approx Cd(x,y)^{-(\alpha+\beta)}$. However, on fractal spaces the index β in (1.1) can actually be larger than 2. The present paper is a part of the project of the authors of creating tools for obtaining stable-like estimate (1.1) for arbitrary $\beta > 0$ including the case $\beta > 2$.

Let us mention for comparison that the theory for obtaining heat kernel bounds for *local* Dirichlet forms on fractal-like spaces has reached by now a certain maturity. It is known that typically the heat kernel of a diffusion on such spaces satisfies *sub-Gaussian* estimate

¹ Although the results of [12,13] require some additional assumptions on the metric space (M,d), this method can be enhanced to work with a general metric structure as it is done in [29].

Download English Version:

https://daneshyari.com/en/article/5772452

Download Persian Version:

https://daneshyari.com/article/5772452

<u>Daneshyari.com</u>