Blow-up analysis concerning singular Trudinger-Moser inequalities in dimension two

Yunyan Yang*, Xiaobao Zhu
Department of Mathematics, Renmin University of China, Beijing 100872, PR China

A R T I C L E I N F O

Article history:

Received 11 April 2016
Accepted 28 December 2016
Available online 3 January 2017
Communicated by H. Brezis

$M S C$:

46 E 35

Keywords:
Singular Trudinger-Moser inequality
Blow-up analysis

Abstract

In this paper, we derive a sharp version of the singular Trudinger-Moser inequality, which was originally established by Adimurthi and Sandeep [2]. Moreover, extremal functions for those singular Trudinger-Moser inequalities are also obtained. Our method is the blow-up analysis. Compared with our previous work ([32]), the essential difficulty caused by the presence of singularity is how to analyse the asymptotic behavior of certain maximizing sequence near the blow-up point. We overcome this difficulty by combining two different classification theorems of Chen and $\mathrm{Li}[6,7]$ to get the desired bubble.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω be a smooth bounded domain in $\mathbb{R}^{2}, W_{0}^{1,2}(\Omega)$ be a completion of $C_{0}^{\infty}(\Omega)$ under the norm $\|u\|_{W_{0}^{1,2}(\Omega)}=\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{1 / 2}$. The Sobolev embedding theorem states that $W_{0}^{1,2}(\Omega)$ is embedded in $L^{p}(\Omega)$ for any $p>1$, but not in $L^{\infty}(\Omega)$. However, as a limit case of the Sobolev embedding, the Trudinger-Moser inequality [37,22,21,26,20] says that

[^0]\[

$$
\begin{equation*}
\sup _{u \in W_{0}^{1,2}(\Omega),\|\nabla u\|_{2} \leq 1} \int_{\Omega} e^{\gamma u^{2}} d x<+\infty, \quad \forall \gamma \leq 4 \pi ; \tag{1}
\end{equation*}
$$

\]

Moreover, these integrals are still finite for all $\gamma>4 \pi$ and all $u \in W_{0}^{1,2}(\Omega)$, but the supremum is infinity. This inequality was generalized in many ways, one of which is as below. Let $\lambda_{1}(\Omega)$ be the first eigenvalue of the Laplacian, namely

$$
\begin{equation*}
\lambda_{1}(\Omega)=\inf _{u \in W_{0}^{1,2}(\Omega), u \neq 0} \frac{\|\nabla u\|_{2}^{2}}{\|u\|_{2}^{2}} . \tag{2}
\end{equation*}
$$

Here and throughout this paper, we denote the usual $L^{p}(\Omega)$-norm by $\|\cdot\|_{p}$ for any $p>0$. It was proved by Adimurthi and O. Druet [1] that for any $\alpha<\lambda_{1}(\Omega)$,

$$
\begin{equation*}
\sup _{u \in W_{0}^{1,2}(\Omega),\|\nabla u\|_{2} \leq 1} \int_{\Omega} e^{4 \pi u^{2}\left(1+\alpha\|u\|_{2}^{2}\right)} d x<+\infty \tag{3}
\end{equation*}
$$

Moreover the supremum is infinity for any $\alpha \geq \lambda_{1}(\Omega)$. This result was extended by Y. Yang $[28,29]$ to the cases of high dimension and compact Riemannian surface, by $\mathrm{Lu}-$ Yang [19] and J. Zhu [38] to the version of L^{p}-norm, by de Souza and J.M. do Ó $[11,13]$ to the whole Euclidean space, and by Tintarev [25] to the following form

$$
\begin{equation*}
\sup _{u \in W_{0}^{1,2}(\Omega),\|u\|_{1, \alpha} \leq 1} \int_{\Omega} e^{4 \pi u^{2}} d x<+\infty, \quad \forall \alpha<\lambda_{1}(\Omega) . \tag{4}
\end{equation*}
$$

Here and throughout this paper, for any α and u satisfying $\sqrt{\alpha}\|u\|_{2} \leq\|\nabla u\|_{2}$, we denote

$$
\begin{equation*}
\|u\|_{1, \alpha}=\left(\int_{\Omega}|\nabla u|^{2} d x-\alpha \int_{\Omega} u^{2} d x\right)^{1 / 2} \tag{5}
\end{equation*}
$$

One can check that (4) is stronger that (3). In a recent work [32], we generalized the inequality (4) to the case that large eigenvalues are involved, as well as to the manifold case. Also, we obtained extremal functions for these kind of Trudinger-Moser inequalities. For pioneer works on extremal functions for Trudinger-Moser inequality, we refer the reader to L. Carleson and A. Chang [8], M. Struwe [23], M. Flucher [14], K. Lin [18], and Y . Li [16].

Now we describe another kind of generalization of (1), namely the singular TrudingerMoser inequality. Based on a rearrangement argument, Adimurthi and K. Sandeep [2] were able to prove the following: Let $\Omega \subset \mathbb{R}^{2}$ be a smooth bounded domain, and $0 \leq \beta<1$ be fixed. Then there holds

$$
\begin{equation*}
\sup _{u \in W_{0}^{1,2}(\Omega),\|\nabla u\|_{2} \leq 1} \int_{\Omega} \frac{e^{4 \pi(1-\beta) u^{2}}}{|x|^{2 \beta}} d x<+\infty . \tag{6}
\end{equation*}
$$

Download Persian Version:
https://daneshyari.com/article/5772453

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: yunyanyang@ruc.edu.cn (Y. Yang), zhuxiaobao@ruc.edu.cn (X. Zhu).

