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Let G be a finite group and denote by CG the commuting 
square associated to G. The defect of the group G, given by 
the formula d(G) =

∑
g∈G

|G|
order(g) , was introduced in [9] as an 

upper bound for the number of linearly independent directions 
in which CG can be continuously deformed in the class of 
commuting squares. In this paper we show that this bound 
is actually attained, by constructing d(G) analytic families of 
commuting squares containing CG.
In the case G = Zn, the defect d(Zn) can be interpreted 
as the dimension of the enveloping tangent space of the real 
algebraic manifold of n × n complex Hadamard matrices, at 
the Fourier matrix Fn (in the sense of [14,1]). The dimension 
of the enveloping tangent space gives a natural upper bound 
on the number of continuous deformations of Fn by complex 
Hadamard matrices, of linearly independent directions of 
convergence. Our result shows that this bound is reached, 
which is rather surprising. In particular our construction 
yields new analytic families of complex Hadamard matrices 
stemming from Fn.
In the last section of the paper we use a compactness argument 
to prove non-equivalence (i.e. non-isomorphism as commuting 
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squares) for dephased versions of the families of Hadamard 
matrices constructed throughout the paper.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Commuting squares were introduced in [10], as invariants and construction data in 
Jones’ theory of subfactors [3,4]. They encode the generalized symmetries of the sub-
factor, in a lot of situations being complete invariants [11,10]. In particular, any finite 
group G can be encoded in a group commuting square:

CG =
(

D ⊂ Mn(C)
∪ ∪

CIn ⊂ C[G]

)

where D � l∞(G) is the algebra of n × n diagonal matrices, and C[G] denotes the 
group algebra of G. It can be shown that two group commuting squares are isomorphic 
if and only if the corresponding groups are isomorphic. The subfactor associated to CG

by iterating Jones’ basic construction is a cross product subfactor, hence of depth 2. 
Moreover, if G is abelian then CG is a spin model commuting square, and the associated 
subfactor is a Hadamard subfactor in the sense of [7].

In [6], the first author initiated a study of the deformations of a commuting square, 
in the class of commuting squares. It was shown that if a commuting square satisfies a 
certain span condition, then it is isolated among all non-isomorphic commuting squares. 
In the case of CG, the span condition is V = Mn(C), where V is the subspace of Mn(C)
given by:

V = span{du− ud : d ∈ D,u ∈ C[G]} + C[G] + C[G]′ + D

When the span condition fails, the dimension d′(G) of V ⊥ = Mn(C) � V can be 
interpreted as an upper bound for the number of independent directions in which CG can 
be deformed by non-isomorphic commuting squares. In [9] we computed this dimension, 
which we called the dephased defect of the group G. We also studied the related quantity 
d(G) = dimC([D, C[G]]⊥), called the undephased defect of G (or just the defect of G), 
which can be interpreted as an upper bound for the number of independent directions 
in which CG can be deformed by (not necessarily non-isomorphic) commuting squares. 
The terminologies ‘dephased defect’ and ‘undephased defect’ are based on previous work 
of [5], [14] and [1], which we explain below.

The concept of defect for unitary matrices can be traced back to [5]. The terminology 
‘defect’ was first explicitly introduced in [14]. The (dephased) defect of the Fourier matrix 
Fn = 1√

n
(ei 2πkl

n )1≤k,l≤n was computed, and it was proved that it gives an upper bound 
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