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We improve the error terms of some estimates related 
to counting lattices from recent work of L. Fukshansky, 
P. Guerzhoy and F. Luca (2017). This improvement is based 
on some analytic techniques, in particular on bounds of 
exponential sums coupled with the use of Vaaler polynomials.
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1. Introduction

1.1. Background

For integer T ≥ 1, we let

F(T ) = {a/b : (a, b) ∈ Z
2, 0 ≤ a < b ≤ T, gcd(a, b) = 1}

be the set of Farey fractions. We also define

I(T ) = F(T ) ∩ [0, 1/2] .

Now, following [6], we consider the quantity

C(T ) =
∑

a/b∈I(T )

#Ca,b(T ),

where

Ca,b(T ) = F(T ) ∩ [1 − a2/b2, 1].

The quantity C(T ) appears naturally in some counting problems for two-dimensional 
lattices. More precisely, every similarity class of planar lattices can be parametrised by 
a point τ = x0 + iy0 in

R = {τ = x0 + iy0 : 0 ≤ x0 ≤ 1/2, y0 ≥ 0, |τ | ≥ 1} ⊆ C,

where one identifies τ ∈ R with the lattice

Λτ =
(

1 x0
0 y0

)
Z

2.

Further, similarity classes of arithmetic planar lattices correspond to Λτ , where

τ = a/b + i
√

c/d

for integers a, b, c, d such that

gcd(a, b) = gcd(c, d) = 1, 0 ≤ a ≤ b/2, d > 0, c/d ≥ 1 − a2/b2.

The class is semistable if furthermore c ≤ d. With these conventions, the quantity C(T )
counts the number of similarity classes of semi-stable arithmetic planar lattices of height 
at most T , that if for which max{a, b, c, d} ≤ T .
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