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We formulate a version of the Random Wave Conjecture for 
the fourth moment of Eisenstein series which is based on 
Zagier’s regularized inner product. We prove an asymptotic 
formula expressing the regularized fourth moment as a mean 
value of L-functions. This is an advantage over previous work 
in the literature, which has approached the fourth moment 
problem through truncated Eisenstein series and not yielded 
a suitable expression in terms of L-functions.
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1. Introduction

One of the main research themes in recent years in the theory of automorphic forms 
is the problem of mass distribution. Let X = Γ\H, where H is the upper half complex 
plane and Γ = SL2(Z). In his PhD thesis, Spinu [Sp] obtained the following type of weak 
equidistribution result: ∫

X

|EA(z, 1
2 + iT )|4dμz � T ε, (1.1)

where dμ(z) = dxdy
y2 and EA(z, s) is the truncated Eisenstein series, which on the fun-

damental domain equals E(z, s) for Im(z) ≤ A, and E(z, s) minus its constant term for 
Im(z) > A. See the next section for a more careful definition. Spinu’s result (see also 
[Lu] for a closely related result) is in line with a much more general conjecture, called 
the Random Wave Conjecture. This conjecture was made for Eisenstein series in [HR, 
section 7.3]. In terms of moments this implies: for any even integer p ≥ 0 and any nice 
compact Ω ⊂ X, we should have

lim
T→∞

1
vol(Ω)

∫
Ω

∣∣∣EA(z, 1
2 + iT )√

2 log T

∣∣∣pdμz = cp
vol(X)p/2

, (1.2)

where cp is the pth moment of the normal distribution N (0, 1). The same conjecture is 
also made for E(z, 12 +iT ). As we will see below, 

√
2 log T roughly equals ‖EA(·, 12 +iT )‖2.

One would of course like to go beyond Spinu’s upper bound and prove an asymptotic 
for the fourth moment of Eisenstein series. In [BK], this was achieved, conditional on 
the Generalized Lindelöf Hypothesis, for Hecke Maass forms of large eigenvalue when 
Ω = X, and agreement was found with the RWC. Thus in analogy one would expect 
(1.2) to also hold for p = 4 and Ω = X, and one may hope that the statement in this case 
can be proven unconditionally. After all, such problems can be a bit easier for Eisenstein 
series – for example, recall that the case p = 2 of (1.2) was first proven for Eisenstein 
series [LS] before the analogue was proven for Hecke Maass forms [Li,So].

What would the proof of such an asymptotic entail? The starting point in [BK] is to 
relate the fourth moment of an L2-normalized Hecke Maass form f to L-functions. One 
uses the spectral decomposition and Plancherel’s theorem to write

〈f2, f2〉 =
∑
j≥1

|〈f2, uj〉|2 + . . . , (1.3)

where the inner product is the Petersson inner product, {uj : j ≥ 1} is an orthonormal 
basis of Hecke Maass forms, and the ellipsis denotes the contribution of the Eisenstein 
spectrum and constant eigenfunction. Next one can use Watson’s triple product formula 
to relate the squares of the inner products on the right hand side to central values of 
L-functions. Thus the problem is reduced to one of obtaining a mean value of L-functions. 
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