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Dujella and Pethő, generalizing a result of Baker and 
Davenport, proved that the set {1, 3} cannot be extended 
to a Diophantine quintuple. As a consequence of our main 
result, we show that the Diophantine pair {1, b} is regular if 
b − 1 is a prime power.
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1. Introduction

A set of m distinct positive integers {a1, . . . , am} is called a Diophantine m-tuple
if aiaj + 1 is a perfect square. Diophantus studied sets of positive rational numbers 
with the same property, particularly he found the set of four positive rational numbers { 1

16 ,
33
16 ,

17
4 , 105

16
}
. But the first Diophantine quadruple was found by Fermat observing 

that the set {1, 3, 8, 120} is a Diophantine quadruple. Moreover, Baker and Davenport, in 
their classical paper [1], proved that the set {1, 3, 8} cannot be extended to a Diophantine 
quintuple.

In 1997, Dujella [3] obtained that the Diophantine triples of the form {k−1, k+1, 4k}, 
for k ≥ 2, cannot be extended to a Diophantine quintuple. The Baker–Davenport’s result 
corresponds to k = 2. In 1998, Dujella and Pethő [6] proved that the Diophantine pair 
{1, 3} cannot be extended to a Diophantine quintuple. In 2008, Fujita [7] obtained a more 
general result by showing that the Diophantine pair {k − 1, k + 1} cannot be extended 
to a Diophantine quintuple for any integer k ≥ 2. In 2004, Dujella [5] proved that there 
are only finitely many Diophantine quintuples. A folklore conjecture states that there 
does not exist a Diophantine quintuple. This conjecture was proved by the first, third 
authors and V. Ziegler [9]. Let

d+ = d = a + b + c + 2abc + 2
√

(ab + 1)(ac + 1)(bc + 1).

A stronger version of this conjecture is the following

Conjecture. If {a, b, c, d} is a Diophantine quadruple and d > max{a, b, c}, then d = d+.

We introduce the concept of regular quadruple. A Diophantine quadruple {a, b, c, d} is 
regular if and only if (a + b − c − d)2 = 4(ab + 1)(cd + 1). Therefore, the quadruples in 
the above conjecture are regular.

The (solved) folklore conjecture is weaker than the above conjecture. For a fixed 
Diophantine triple {a, b, c}, we view the fourth element x > max{a, b, c} as a solution 
such that {a, b, c, x} is a Diophantine quadruple. A trivial solution is x = d+. The latest 
result on the folklore conjecture (see [9]) lets us know that there are no two such solutions 
x = x1 (= d+) and x = x2 corresponding to the same Diophantine triple {a, b, c} with 
an additional condition that x1x2 + 1 = �. But, in general when we remove the relation 
between x1 and x2, we don’t know whether x = d+ is the unique solution. We do not 
even know whether there are infinitely many irregular Diophantine quadruples or not. 
Namely, this conjecture is still open.

The aim of this paper is to consider the extensibility of the Diophantine pair {1, b}
and to give a new generalization of the mentioned theorems by Baker and Davenport [1]
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