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In this article, we consider the actions of subgroups of the 
general linear group GLr(Zn) on Zr

n, including groups of 
upper triangular matrices in GLr(Zn), unipotent groups, 
Heisenberg groups and extended Heisenberg groups. By 
applying the Cauchy–Frobenius–Burnside lemma, we obtain 
several generalizations of the well known Menon’s identity.
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1. Introduction

In [3], P.K. Menon proved the following elegant identity. For every positive integer n, 
we have ∑

a∈U(Zn)

gcd(a− 1, n) = ϕ(n)τ(n),

where U(Zn) = {a ∈ Zn| gcd(a, n) = 1} is the group of units of the ring Zn = Z/nZ, 
ϕ is the Euler’s totient function and τ(n) is the number of positive divisors of n.

Many authors obtained various generalizations of Menon’s identity (e.g., see [1,2,
4,5,7,6,10,11,14]). A useful technique to prove Menon-type identities is the so-called 
Cauchy–Frobenius–Burnside lemma (see [9] or [8, Chapter 3]), which states that

Cauchy–Frobenius–Burnside lemma: Let G be a finite group acting on a finite set X. 
Let G\X be the set of orbits and Xg = {x ∈ X|gx = x} be the set of fixed elements in 
X by g, where g ∈ G. Then

|G\X| = 1
|G|

∑
g∈G

|Xg|.

That is, the number of distinct orbits is the average number of fixed points by the 
elements of the group.

For example, the Menon’s identity is derived from considering the action of U(Zn)
on Zn.

In [12], B. Sury computed both sides of the Cauchy–Frobenius–Burnside lemma for 
the action of the multiplicative matrix group

G =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
a b1 b2 . . . br
0 1 0 . . . 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 . . . 1

⎞⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣∣
a ∈ U(Zn), bi ∈ Zn for all i > 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
on the set X = Z

r+1
n as matrix multiplication on the left of column vectors. Then, Sury 

obtained the following identity:∑
a∈U(Zn)

b1,...,br∈Zn

gcd(a− 1, b1, . . . , br, n) = ϕ(n)σr(n),

where σr(n) =
∑

d|n d
r is the sum of r-th powers of positive divisors of n. He also 

considered the action of the general linear group GLr(Zn) on Zr
n and derived some 

results (see [12, Theorem 2]).
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