On a product of certain primes

Bernd C. Kellner

Göppert Weg 5, 37077 Göttingen, Germany

A R T I C L E I N F O

Article history:

Received 20 February 2017
Received in revised form 19 March
2017
Accepted 25 March 2017
Available online xxxx
Communicated by D. Goss

MSC:

primary 11B83
secondary 11B68
Keywords:
Product of primes
Bernoulli polynomials
Denominator
Sum of base- p digits
p-Adic valuation of polynomials

A B S T R A C T

We study the properties of the product, which runs over the primes,

$$
\mathfrak{p}_{n}=\prod_{s_{p}(n) \geq p} p \quad(n \geq 1)
$$

where $s_{p}(n)$ denotes the sum of the base- p digits of n. One important property is the fact that \mathfrak{p}_{n} equals the denominator of the Bernoulli polynomial $B_{n}(x)-B_{n}$, where we provide a short p-adic proof. Moreover, we consider the decomposition $\mathfrak{p}_{n}=\mathfrak{p}_{n}^{-} \cdot \mathfrak{p}_{n}^{+}$, where \mathfrak{p}_{n}^{+}contains only those primes $p>\sqrt{n}$. Let $\omega(\cdot)$ denote the number of prime divisors. We show that $\omega\left(\mathfrak{p}_{n}^{+}\right)<\sqrt{n}$, while we raise the explicit conjecture that

$$
\omega\left(\mathfrak{p}_{n}^{+}\right) \sim \kappa \frac{\sqrt{n}}{\log n} \quad \text { as } n \rightarrow \infty
$$

with a certain constant $\kappa>1$, supported by several computations.
© 2017 Elsevier Inc. All rights reserved.

[^0]http://dx.doi.org/10.1016/j.jnt.2017.03.020
0022-314X/® 2017 Elsevier Inc. All rights reserved.

[^1]
1. Introduction

Let \mathbb{P} be the set of primes. Throughout this paper, p denotes a prime, and n denotes a nonnegative integer. The function $s_{p}(n)$ gives the sum of the base- p digits of n. Let $\mathcal{P}(n)$ denote the greatest prime factor of $n \geq 2$, otherwise $\mathcal{P}(n)=1$. An empty product is defined to be 1 .

We study the product of certain primes,

$$
\begin{equation*}
\mathfrak{p}_{n}:=\prod_{\substack{p \in \mathbb{P} \\ s_{p}(n) \geq p}} p \quad(n \geq 1) \tag{1}
\end{equation*}
$$

which is restricted by the condition $s_{p}(n) \geq p$ on each prime factor p. Since $s_{p}(n)=n$ in case $p>n$, the product (1) is always finite.

The values \mathfrak{p}_{n} are of basic interest, as we will see in Section 2, since they are intimately connected with the denominators of the Bernoulli polynomials and related polynomials.

Theorem 2 below supplies sharper bounds on the prime factors of \mathfrak{p}_{n}. For the next theorem, giving properties of divisibility, we need to define the squarefree kernel of an integer as follows:

$$
\operatorname{rad}(n):=\prod_{p \mid n} p, \quad \operatorname{rad}^{*}(n):= \begin{cases}1, & \text { if } n \text { is prime, } \quad(n \geq 1) \\ \operatorname{rad}(n), & \text { else }\end{cases}
$$

Theorem 1. The sequence $\left(\mathfrak{p}_{n}\right)_{n \geq 1}$ obeys the following divisibility properties:
(a) Any prime p occurs infinitely often:

$$
n \equiv-1 \quad(\bmod p) \quad(n>p) \quad \Longrightarrow \quad p \mid \mathfrak{p}_{n}
$$

(b) Arbitrarily large intervals of consecutive members exist such that

$$
p\left|\mathfrak{p}_{n} \quad \Longrightarrow \quad p\right| \mathfrak{p}_{n p^{r}+b} \quad\left(0 \leq b<p^{r}, r \geq 1\right)
$$

(c) Arbitrarily many prime factors occur, in particular:

$$
\operatorname{rad}^{*}(n+1) \mid \mathfrak{p}_{n}
$$

Theorem 2 (Kellner and Sondow [3]). If $n \geq 1$, then

$$
\mathfrak{p}_{n}=\prod_{\substack{p \leq \frac{n+1}{\begin{subarray}{c}{n} }}} \\
{s_{p}(n) \geq p}\end{subarray}} p,
$$

where

https://daneshyari.com/en/article/5772509

Download Persian Version:
https://daneshyari.com/article/5772509

Daneshyari.com

[^0]: E-mail address: bk@bernoulli.org.

[^1]: Please cite this article in press as: B.C. Kellner, On a product of certain primes, J. Number Theory (2017), http://dx.doi.org/10.1016/j.jnt.2017.03.020

