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We study the properties of the product, which runs over the 
primes,

pn =
∏

sp(n) ≥ p

p (n ≥ 1),

where sp(n) denotes the sum of the base-p digits of n. One 
important property is the fact that pn equals the denominator 
of the Bernoulli polynomial Bn(x) −Bn, where we provide a 
short p-adic proof. Moreover, we consider the decomposition 
pn = p−n · p+

n , where p+
n contains only those primes p > √

n. 
Let ω(·) denote the number of prime divisors. We show that 
ω(p+

n ) < √
n, while we raise the explicit conjecture that

ω(p+
n ) ∼ κ

√
n

logn
as n → ∞

with a certain constant κ > 1, supported by several compu-
tations.
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1. Introduction

Let P be the set of primes. Throughout this paper, p denotes a prime, and n denotes 
a nonnegative integer. The function sp(n) gives the sum of the base-p digits of n. Let 
P(n) denote the greatest prime factor of n ≥ 2, otherwise P(n) = 1. An empty product 
is defined to be 1.

We study the product of certain primes,

pn :=
∏
p ∈ P

sp(n) ≥ p

p (n ≥ 1), (1)

which is restricted by the condition sp(n) ≥ p on each prime factor p. Since sp(n) = n

in case p > n, the product (1) is always finite.
The values pn are of basic interest, as we will see in Section 2, since they are intimately 

connected with the denominators of the Bernoulli polynomials and related polynomials.
Theorem 2 below supplies sharper bounds on the prime factors of pn. For the next 

theorem, giving properties of divisibility, we need to define the squarefree kernel of an 
integer as follows:

rad(n) :=
∏
p | n

p, rad∗(n) :=
{

1, if n is prime,
rad(n), else

(n ≥ 1).

Theorem 1. The sequence (pn)n≥1 obeys the following divisibility properties:

(a) Any prime p occurs infinitely often:

n ≡ −1 (mod p) (n > p) =⇒ p | pn.

(b) Arbitrarily large intervals of consecutive members exist such that

p | pn =⇒ p | pnpr+b (0 ≤ b < pr, r ≥ 1).

(c) Arbitrarily many prime factors occur, in particular:

rad∗(n + 1) | pn.

Theorem 2 (Kellner and Sondow [3]). If n ≥ 1, then

pn =
∏

p≤ n+1
λn

sp(n) ≥ p

p,

where
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